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I. Introduction 
 
 The scope of this project is using Electronic Combat Air Vehicles (ECAVs) to 
cooperatively deceive a network of radars by creating phantom tracks in two dimensions – range 
and azimuth.  A network of radars is defined as a geometric arrangement (possibly changing with 
time) of two or more radars, which are able to communicate with each other; hence, two or more 
radars may be used to track and correlate the same target.  The methods by which a team of 
ECAVs might create one or more phantom tracks for a network of radars include mainlobe 
deception using range delay techniques and sidelobe deception using range delay and angle-
based techniques.  Before explaining these deceptive methods for creating phantom tracks and 
how ECAVs might accomplish such a task, some essential radar fundamentals are presented. 
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II. Radar Fundamentals 
 

All of the theory on radar presented in this paper was obtained from “Introduction to 
Airborne Radar” by George Stimson.  To keep its transmitter from interfering with reception, a 
radar usually transmits radio waves in pulses and only turns on its receiver in between pulses to 
listen for the echoes (see Figure I below). 

τ

T

Power

Time

Transmitted
pulse

 
Figure I: Transmitted power of a pulsed radar over time 
 

The parameters of interest in Figure I and some useful combinations of these parameters 
are defined as follows. 

τ ~ Pulse width 
T ~ Interpulse period or pulse repetition interval 

rf
T
=

1  ~ Rate of pulse transmission or pulse repetition frequency (PRF) 

T
τ  ~ Fraction of time the radar is transmitting or duty factor of the transmitter 

 
Since radio waves travel at approximately the speed of light, the range (distance from 

radar) of a target can be determined using a measurement of the round-trip time, t, for a pulse to 
be transmitted and its echo from the target received.  A rule of thumb is that a round-trip time of 
10 microseconds corresponds to a range of 1.5 kilometers.  This method of range measurement, 
known as pulse-delay ranging, is simple and accurate; it is valid for radars operating at a low 
PRF where the interpulse period is longer than the round-trip time for a given target (see Figure 
II below). 
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Figure II: Pulsed radar operating at a low PRF with Tt < , making pulse-delay ranging possible 
 

Observing Figure II shows that, for a target’s range, R, to be accurately measurable using 
pulse-delay ranging, the following inequality must hold. 

 

rf
ccTctR

22
1

2
1

=<=  (1) 

 
Applying (1) and with the speed of light, c, equal to 300,000 kilometers per second, a low PRF 
of one kilohertz would allow radar to accurately measure ranges less than 150 kilometers using 
pulse-delay ranging; a PRF of five kilohertz would reduce this value to 30 kilometers.  Figure II 
also helps illustrate that a given range observed by radar becomes more ambiguous as PRF 
increases.  For, as T decreases below t, the number of transmitted pulses an echo could belong to 
increases. 

Because of the Doppler effect, a target’s range rate can be determined by comparing the 
frequency of transmitted pulses to that of their echoes from the moving target; the resulting 
difference is known as the target’s Doppler frequency.  Range rates are miniscule compared to 
the speed of light; hence, Doppler frequencies are extremely small and are measured in terms of 
a progressive phase shift from cycle to cycle, which requires that the pulses are coherent.  To 
detect Doppler frequencies, radars use a bank of narrowband filters, each tuned to a specific 
frequency.  Unfortunately, because pulsed signals are discontinuous, a received echo will pass 
through a filter tuned not only to its frequency but also above/below its frequency by multiples of 
the PRF.  These frequencies passed by the filter are called spectral lines and make Doppler 
frequency measurement difficult if the PRF is lower than the Doppler frequency (see Figure III 
below). 
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Figure III: Pulsed radar operating at a high PRF with rd ff < , making Doppler frequency 
measurement possible 
 

To obtain accurate measurements of a target’s Doppler frequency and hence its range 
rate, R , Figure III makes apparent the necessary inequality, 
 

 rd ff
c
fR <=− 2 , (2) 

 
where f is the frequency of the transmitted pulse.  The minus sign correlates a negative range rate 
or closing target with a positive Doppler frequency.  Using (2) and assigning values of 300,000 
kilometers per second and 10 gigahertz for c and f, respectively, a high PRF of 100 kilohertz 
would allow radar to accurately measure range rates below 1500 meters per second; a PRF of 
five kilohertz would reduce this value to 75 meters per second. 

Contrasting the increase of range ambiguities with an increase in PRF, Figure III helps to 
show that a given range rate or Doppler frequency observed by radar becomes more ambiguous 
as PRF decreases.  For, as fr decreases below fd, spectral lines of the echo appear between the 
transmitted pulse and the received echo, and there is no direct way to distinguish between these 
frequencies and the true Doppler frequency of the received echo.  Figure IV below summarizes 
the effect of PRF on range and range rate measurements.  It is important to note that this tradeoff 
of accurate range and range rates with PRF is idealized.  Tracking radars can operate at medium 
PRF where range and range rate ambiguities are both a factor, but can shift between low and 
high PRF's to compensate for these limitations and obtain accurate ranges and range rates for 
targets.  In any case, PRF is a key characteristic of pulsed radar. 
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Figure IV: How PRF affects range and range rate measurements 
 

A second key characteristic for any radar is its antenna radiation pattern or distribution of 
radiated power, P, in angle, θ.  For radars with a planar array antenna, which contains rows of 
closely spaced radiators, the radiation pattern can be approximated by the following equation. 
 

 
2sin






=

x
xP , where (3) 

 θ
λ

π sinLx =  

 L ~ Horizontal length or diameter of the antenna 
 λ ~ Operational wavelength 
 
An idealized radiation pattern for a planar array antenna, using eq. (3), is shown below in Figure 
V.  The specific parameters used to plot this pattern are two meters and 30 centimeters for L and 
λ, respectively. 

0 dB  -10 dB  -20 dB  

-3 dB

  θ3 dBRadar →

Mainlobe

Sidelobes
 

Figure V: Idealized radiation pattern for radar with a planar array antenna 
 

In Figure V, the mainlobe of the radar is the region where most of the radiated power is 
concentrated.  The sidelobes are much weaker and are caused by cancellation and addition of 
waves from the antenna’s individual radiators as the waves’ relative phases change with angle.  
The radar’s beamwidth, θ3 dB, has edges defined by points where the power has dropped to ½ of 
that at the center of the beam (-3 decibels).  Only the beamwidth is used to search for targets; 
radiated power outside this area is generally not desired.  The radiation pattern describes not only 
how transmitted power is distributed in angle but also how received power is attenuated with 
angle; this characteristic is called reciprocity. 
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III. Mainlobe Deception 
 

Assuming that an ECAV is not detected and knows the maximum operational range, Rmax-
, and location of a radar with pulse-to-pulse agility, the ECAV can intercept and appropriately 
delay the return of the radar’s transmitted pulses so that the radar sees a phantom target beyond 
the ECAV but closer than Rmax.  The capability of digitally storing, altering, and returning 
encoded pulses so that they correspond to a desired range and range rate is formally known as 
Digital Radio Frequency Memory (DRFM), but will often be referred to simply as range delay 
since it is assumed that digital means will be used to accomplish this task.  To deceive the radar 
using only range delay requires that the ECAV be in the radar’s mainlobe; of course, the 
phantom target will also be on the line of sight (LOS) from the radar to the ECAV.  Thus, the 
phantom target’s track is a function of the ECAV’s range delay and bearing from the radar.  If 
the radar operates at a low PRF so that pulse-delay ranging is possible, then accurately delaying 
the radar’s pulses is crucial.  If the radar operates at a medium or high PRF and is in tracking 
mode, then accurate range information is still important, and the ECAV should also focus on 
sending returns with accurate Doppler frequencies for the phantom target (see Figure IV above).  
Keep in mind that a phantom track flying roughly perpendicular to a radar will not produce 
significant Doppler frequencies and may even get filtered out or ignored by some radars.  Figure 
VI below illustrates how four ECAVs could cooperatively create a single phantom track to 
deceive a network of four radars by using range delay techniques.  Unless all radars see the same 
phantom track, the track is dismissed as spurious. 

4 ECAVs →

4 Radars →

t(1+n)
t(1)

LOS →

Phantom track

 
Figure VI: Cooperative mainlobe deception of a radar network by creation of a phantom track 
 

One problem of interest is to determine the allowable trajectories for the ECAVs given 
their initial conditions and a time-dependent phantom track.  Observing Figure VI, one can see 
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that each ECAV behaves much like a bead on a string that is rotating at some variable rate; the 
ECAV may slide up and down freely but must rotate with the LOS from the radar to the phantom 
track.  If the speed, heading, or another variable of the ECAV is limited, then it can no longer 
slide freely; in fact, an allowable trajectory for the ECAV may not exist. 

Assuming that the number of ECAVs equals the number of radars, then the inherent 
limits of mainlobe deception on an ECAV trajectory can be assessed using degrees of freedom 
(DOF).  Any general phantom track specified in the x-y plane has two DOF, which can be 
represented by R and θ or alternately by υT and φT (see Figure VII below).  Likewise, two DOF 
also represent any free ECAV trajectory in the same plane and can be represented by r and θ or 
alternately by υE and φE.  Thus, an ECAV trying to generate a given phantom track will have one 
constraint, θ, and one DOF.  This DOF is constrained by setting any other variable of the ECAV, 
including r, υE, or φE. 

r

Rrdot

r⋅θdot

Rdot

R⋅θdot

υE

υT

θ

φE

φT

radar

E

T

 
 
E ~ ECAV 

υE ~ ECAV speed 

φE ~ ECAV course 

r ~ ECAV range from radar 

θ ~ ECAV/phantom  

  target bearing from radar 

T ~ phantom target 

R ~ phantom target range 

  from radar 

υT ~ phantom target speed 

φT ~ phantom target course 

Figure VII: ECAV and phantom track variables and their relations 
 

In general, if the number of ECAVs is greater than or equal to the number of radars, then 
the following two equations relate the number of ECAVs, e, required to generate a desired 
number of tracks with a desired total DOF for the combined tracks. 

 
 ( )∑== Tofnumbersionfactorizatprimeenif ,2 , where (4) 
 n  ~ Number of radars voting 
 1≥T   ~ Number of phantom tracks desired 
 eDOF =  ~ Total DOF constrained 
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 )2(,3 TDOFTnenif −+=≥ , where (5) 
 n   ~ Number of radars voting 
 1≥T    ~ Number of phantom tracks desired  
 tDOF 22 ≤≤  ~ Total DOF desired 
 
For eq. (4) and values of T not having a prime factorization other than 1 and T itself, use the next 
highest value of T that does.  With two radars voting and four phantom tracks desired, eq. (4) 
shows that only four ECAVs are required and the phantom tracks will have a combined four 
DOF.  If instead twelve phantom tracks are desired, then only three additional ECAVs must be 
supplied.  If three radars vote and four phantom tracks with 4 total DOF are again desired, eq. (5) 
equals eight ECAVs required.  In the simple case where each phantom track desired has a full 
two DOF, eq. (5) reduces to e equal to n multiplied by T.  The interesting result of eqs. (4) and 
(5) is that, if there are more ECAVs than radars available, additional phantom tracks – some 
having less than two DOF – may be generated using less than one ECAV per voting radar per 
additional track. 

Mainlobe deception has the primary advantage that it is technically simpler to execute.  
The main disadvantage to mainlobe deception is that it is capable of producing only one phantom 
track when the number of ECAVs is equal to the number of radars voting.  Other issues that need 
to be addressed for mainlobe deception include: 
 

• Inaccuracy of radar/ECAV positions and time delay – an estimation problem 
• Limitations on ECAV dynamics due to bounded ranges for υE, φE, and υT 
• Choosing the “best” phantom track for a team of ECAVs – a decentralized cooperative 

control problem 
• Dealing with bi-static (passive) receivers as part of a radar network 
• Processing power required by DRFM – can be better at low PRF 
• Electronic requirements for generating returns with sufficiently accurate range and 

Doppler frequency information 
 

The first three issues listed above will be addressed later in more detail.  
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IV. Sidelobe Deception 
 

If, in addition to the assumptions in Mainlobe Deception, an ECAV has certain 
information about the radiation pattern of a radar, it can intercept the radar’s transmitted pulses 
through the sidelobes (see Figure V above).  Returning the intercepted pulses using DRFM is 
interpreted by the radar as a return in the radar’s mainlobe between the range of the ECAV and 
Rmax.  This deception assumes that the radar cannot distinguish between returns coming through 
its mainlobe and those coming through its sidelobes.  In this case, the phantom target is not on 
the LOS from the radar to the ECAV.  However, since the phantom target’s bearing from the 
radar is offset from that of the ECAV by a constant angle, the phantom target’s track is still a 
function of only the ECAV’s bearing from the radar and range delay.  As in mainlobe deception, 
if the radar operates at a low PRF, then accurately delaying the radar’s pulses is key.  If the radar 
operates at a medium or high PRF, then sending returns with accurate Doppler frequencies for 
the phantom target is important, as is continued accurate range information if the radar is in 
tracking mode (see Figure IV above). 

An electronically steered array (ESA) antenna progressively shifts the phases coming 
from its individual radiators so that the antenna beam may be steered almost instantaneously to 
track multiple targets.  Hence, an ECAV can use the multiple sidelobes of a radar with ESA 
capabilities to generate multiple phantom tracks.  Figure VIII below presents an example where 
sidelobe and mainlobe deception could be used together to generate multiple phantom tracks for 
two radars. 

Sidelobe deception is considered based on the premise that a tracking radar will lock on 
an ECAV emitting delayed returns through its sidelobe.  This premise depends on the radiation 
patterns of the tracking radars and constrains an ECAV to operate in sidelobe peaks or on one 
line per sidelobe as in Figure VIII.  As stated earlier, the ECAV must determine where it is in 
relation to the mainlobe as well as where the sidelobe peaks are, i.e. the characteristics of the 
radar’s radiation pattern. 
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ECAV

2 Radars →

Sidelobes →

Phantom
targets

possible

Mainlobe →

Phantom track given

Current tracking location ↓ t(1 t(1+δ

  

t(1+2δ) t(1+3δ

 
Figure VIII: Sidelobe and mainlobe deception of a radar network by using one ECAV to create 
multiple phantom tracks 

 
Each picture in Figure VIII represents the two radars tracking a different phantom target; 

the time difference between each picture, δ, is the time required for the radars to send out a 
pulse, receive a return for the current phantom target being tracked, and electronically steer their 
beams to the next tracking location.  Collectively, the four pictures correspond to one tracking 
cycle for the two radars – assuming no other targets are being tracked.  As shown in Figure VIII, 
all the phantom tracks together share only two DOF: once one phantom track is given as a 
function of time, all remaining phantom targets possible for each tracking cycle are fully 
constrained points for any position of the ECAV.  Clearly, the creation of these constrained 
phantom targets over time still generates continuous phantom tracks since the ECAV trajectory 
is continuous.  The scenario in Figure VIII also fully constrains the ECAV trajectory once a 
phantom track is given because the ECAV must deceive radar one and radar two, constraining it 
to both θ1 and θ2. 
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If one radar is subtracted from the Figure VIII-scenario, then a given phantom track does 
not fully constrain the remaining phantom tracks possible.  Each phantom track may have an 
independent range rate – one additional DOF.  Continuing with the concept of DOF, each 
phantom track, T, may be represented as follows. 

 
ni …1=  ~ Number of radars voting 
mj …1=  ~ Number of sidelobes on one side of the mainlobe 

 
1=i  

jjj RT ζθ +→ 1,1,1 , , where 
ζ j ~ Constant angle subtending the mainlobe and jth sidelobe 

 
Thus, in the one-radar case, the first phantom track has two DOF and all remaining phantom 
tracks have one constraint, θ1, and one DOF, R1,j.  The following equation determines how many 
tracks and total DOF are possible for any one radar. 
 
 12,1 +=== mTneif  (6) 
 22 += mDOF  
 
For the two-radar case, with i, j, and ζ j defined as before, the phantom tracks are represented as 
follows. 

 
1=i  

jjj RT ζθ +→ 1,1,1 ,  
2=i  

jjj RT ζθ +→ 2,2,2 ,  
 

Adding the second radar, i = 2, adds the set of phantom tracks, T2, with an additional “free” DOF 
given by eq. (6); however, two constraints per track are also added since T2 must be equal to T1.  
Indeed, if a third radar were added, similar DOF and constraints would again be added.  Thus, 
the following equation generalizes the phantom tracks possible, T, and their total DOF for any 
number of voting radars. 
 
 12,1 +=≥= mTneif  (7) 
 ]1)2([2)12)(1(2)22( +−=+−−+= nmmnmnDOF  
 
Eq. (7) reveals the surprising result that for two radars, all the phantom tracks combined are 
reduced to having only two total DOF as in Figure VIII above.  For three radars, the combined 
phantom tracks share zero DOF and are over-constrained; at best, one phantom track with two 
DOF may be generated as in mainlobe deception. 

In summary, for sidelobe deception the problem geometry and dynamics depend on the 
ratio of ECAVs to radars and the number of radars voting.  Specifically, the number of radars 
voting determines how many phantom tracks are possible and their total DOF; the ratio of 
ECAVs to radars affects the limitations on ECAV trajectories. 
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The big advantage to sidelobe deception is that multiple phantom tracks are possible 
when there are less than three radars voting.  The main disadvantage to sidelobe deception is the 
increased technical complexity of the deception process and the additional information necessary 
for success.  So, in addition to those listed for mainlobe deception, issues for sidelobe deception 
include: 
 

• Information needed on radar radiation patterns and their dependency on frequency 
• Sidelobe attenuation techniques currently used by the radar 

 
Only part of the first issue is now addressed: the dependency of radiation patterns on frequency. 

Equation (3) in Section II describes an idealized radiation pattern for a planar array 
antenna and shows that this pattern depends on frequency through the term λ.  Therefore, 
changing frequency alters the radiation pattern, which includes the sidelobes’ characteristics.  
Figure IX below shows four radiation patterns, each plotted in polar coordinates for a different 
frequency.  The blue value in degrees is θ3 dB, the radar’s beamwidth. 
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Figure IX: How the radiation pattern of a planar array antenna depends on frequency 
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From observing Figure IX, frequency has a significant effect on a radar’s radiation 
pattern.  As frequency increases, the following also occur, though not to the precision shown by 
Figure IX since these plots are idealized (real radiation patterns are not as neat or symmetric). 
 

1. The number of sidelobes increases 
2. The angles between sidelobe tips decrease 
3. The bearings of sidelobes relative to the mainlobe change 
4. The width of sidelobes decreases 
5. The beamwidth decreases 
6. The maximum power of each sidelobe remains constant 

 
Possibly most detrimental to sidelobe deception is item three listed above; varying operational 
frequency causes the bearing location of sidelobes to change relative to the mainlobe.  The most 
helpful observation could be item six; if a reference power in the mainlobe is known, then by 
measuring the power of a pulse coming through a sidelobe, an ECAV might be able to identify 
the sidelobe and even determine its own distance from the sidelobe peak. 

The variation in frequency required to significantly change the bearing location of 
sidelobes appears to be about 20% at a frequency of two gigahertz.  As shown in Figure X 
below, this change in frequency causes the first sidelobes to separate by approximately one 
degree while the sidelobes at –30 decibels are separated by approximately 10 degrees.  Since it is 
assumed that an ECAV can only operate in sidelobe peaks, this amount of separation could be 
enough to place the ECAV in a null or cause a phantom track to break up as radar frequency 
varies. 
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Figure X: Separation of sidelobes due to varying radar operational frequency 
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V. Uncertainty Analysis 
 

One important issue of both mainlobe and sidelobe deception is the effect of the 
inaccuracies of radar position, ECAV position, and ECAV time delay.  These inaccuracies 
contribute to a region of uncertainty around a “nominal” phantom target where the target may 
actually be placed by an unsuspecting ECAV.  If the region is too large, then radars correlating 
tracks in a radar network may be able to discriminate between their respectively observed 
phantom targets and determine the track to be false.  Therefore, given an uncertainty in radar 
position, ∆rd, an uncertainty in ECAV position, ∆r, and an uncertainty in the ECAV’s time 
delay, ∆td, the goal is to develop equations for the maximum deviations in range and azimuth, 
∆Rmax and ∆θmax, for a nominal phantom target.  Figure XI below shows the radar/ECAV 
configuration where the maximum range deviation occurs. 

∆Rmax+

∆rd

∆r

Rnom

r

R

∆Rmax1 ~ due to ∆rd

∆Rmax2 ~ due to ∆r

∆Rmax3 ~ due to ∆td (time delay)

Assumed Radar Location
Assumed ECAV Location
Nominal Phantom Target

 
Figure XI: Radar/ECAV locations and geometry required to produce ∆Rmax+ 
 

Based on Figure XI, the maximum positive deviation in range from that of a nominal 
phantom target, ∆Rmax+, may be calculated as follows. 
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 3max2max1maxmax RRRR ∆+∆+∆=∆ + , where (8) 
 
 nomRrRrdrR −−+∆−=∆ )(22

1max  
 
 rR ∆=∆ 2max  
 

 dtcR ∆=∆
2
1

3max  

 

 22 21 R
r
RrdRnom +





 −∆=  

  
The maximum negative deviation in range, ∆Rmax-, is similarly determined by the following 
equation, where the radar and ECAV are both moved away from but in line with the nominal 
phantom target – a different configuration than Figure XI. 
 
 3max2maxmax RRR ∆+∆=∆ − , where (9) 
 
 rR ∆=∆ 2max  
 

 dtcR ∆=∆
2
1

3max  

 
Surprising at first, ∆Rmax+ and ∆Rmax- are not affected significantly by ∆rd because the ECAV’s 
time delay depends on the distance (R – r), and ∆rd does not affect this quantity.  For the 
maximum deviation in azimuth from a nominal phantom target to occur, a third radar/ECAV 
configuration is necessary, which is shown below in Figure XII. 
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∆θmax+

∆rd

∆r

R′
nom

ract → r

R

∆θmax1 ~ due to ∆rd

∆θmax2 ~ due to ∆r

Assumed Radar Location
Assumed ECAV Location
Nominal Phantom Target

 
Figure XII: Radar/ECAV locations and geometry required to produce ∆θmax+ 
 

Based on Figure XII, the maximum positive deviation in azimuth from that of a nominal 
phantom target, ∆θmax+, may be calculated as follows. 
 
 2max1maxmax θθθ ∆+∆=∆ + , where (10) 
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To calculate the radar resolutions needed to discriminate against correlated phantom 

targets, the following uncertainty values are used. 
 
 ∆rd = 10 meters 
 ∆r = 3 meters 
 ∆td = 10 nanoseconds 
 
An uncertainty in synchronization time was not included in this analysis because its effect on 
∆Rmax and ∆θmax is negligible.  Even with a fast ECAV or phantom target of 300 meters per 
second and an uncertainty in synchronization time of 10 nanoseconds, the contribution to ∆Rmax 
is only 0.000003 meters, and the contribution to ∆θmax is similarly small for any reasonable value 
of R.  Figure XIII below shows the critical radar resolutions, given the above listed uncertainties, 
for two combinations of r and R using eqs. (8) - (10).  Note that the one-way deviations from a 
nominal phantom target were combined to account for the worst case where two phantom targets 
are placed on opposite extremes of the nominal target. 
 
ECAV/phantom target 
distances from radar 

Critical resolution in range, 
∆Rmax = ∆Rmax+ + ∆Rmax- 

Critical resolution in azimuth, 
∆θmax = 2 (∆θmax+) 

r = 5 km 
R = 6 km 9.00 m 0.107 ° 

r = 5 km 
R = 30 km 9.01 m 0.260 ° 

Figure XIII: Critical radar resolutions for two values of R using eqs. (8) - (10) 
 
 This analysis could apply to sidelobe deception as well as mainlobe deception; offsetting 
the ECAV’s bearing from the radar by a constant angle does not change the results.  Given that 
targets are larger than nine meters, it seems reasonable that mainlobe deception may be able to 
present coherent phantom tracks.  However, the critical resolution in azimuth of 0.260 degrees is 
136 meters wide at R = 30 kilometers. 
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VI. Results of a Constant Speed ECAV 
 

Before applying realistic bounded ranges for the speed of the ECAV, its course, and the 
speed of the phantom track, it is helpful to know the dynamic limitations on an ECAV when just 
a constant speed is assumed.  With mainlobe deception as the focus for this section, the ECAV’s 
one DOF is constrained by its constant speed.  The inverse problem is now of interest: given a 
time-dependent phantom track and an ECAV’s initial position, synthesize the ECAV trajectory 
required to create the desired phantom track.  For ease of comparison, the following non-
dimensional variables are used, with υE = 1, R0 = 1, and θ 0 = 0. 

 

t
R

t E

0

υ
→   

0R
rr →  

E

T

υ
υ

α →    
0R

RR →  

 
Given these definitions and a constant-speed constant-course phantom track for this analysis, 
Figure XIV below illustrates the appropriate variables and their relations.  For definitions of the 
basic ECAV and phantom track variables, see Figure VII above. 

θ0=0
r

R

R0=1

υE=1

α

rdot

r⋅θdot

R⋅θdot

θ

φE

φT

ψ
radar

E

T

 
Figure XIV: Variables and relations for a constant speed ECAV and a constant-speed constant-
course phantom track 
 

The basic equations of motion for the ECAV and phantom target, using polar 
coordinates, are as follows.  Every derivative is taken with respect to time. 
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 0)0(,cos rrr E == φ  (11) 

 0)0(,sin1
== θφθ Er

 (12) 

 
 1)0(,cos == RR Tφα  (13) 

 0)0(,sin1
== θφαθ Tr

 (14) 

 
Without loss of generality, θ  is assumed positive.  Manipulating eqs. (11) and (12) results in the 
following differential equations.  These same equations easily follow by using the Pythagorean 
theorem on Figure XIV. 
 
 0

2 )0(,)(1 rrrr =−= θ  (15) 

 0
2 )0(,)(1 rrrr =−−= θ  (16) 

 
For both equations, the ECAV’s range, including r0, must satisfy the following inequality for a 
solution to exist. 
 

 ttr ∀< ,1)(
θ

 (17) 

 
If condition (17) is not satisfied, the solutions to eqs. (15) and (16) become imaginary.  
Physically, condition (17) makes it clear that an ECAV cannot fly at a constant speed of one 
when its range is such that θr  is greater than one (see Figure XIV above).  If θr  is less than 
one, the ECAV may fly at a constant speed of one by having the correct r  component via eq. 
(15) or (16).  If either eq. (15) or (16) reaches zero in finite time at ts, the necessary condition for 
switching from one equation to the other is as follows, assuming the second derivative of θ 
exists. 
 
 0)( =stθ   (18) 
 
Finally, the equations defining the constant-speed constant-course phantom track in polar 
coordinates are as follows (see Figure XIV above). 
 
 ψαα cos21)( 22 tttR −+=  (19) 
 

 







=

)(
sinarcsin)(

tR
tt ψαθ  (20) 

 

 
ψαα

ψαθ
cos21

sin)( 22 tt
t

−+
=  (21) 
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To solve for an ECAV trajectory given this phantom track, eq. (21) is inserted into eq. (15) or 
(16), and the solution, r(t), is plotted versus θ(t), which is obtained from eq. (20) and (19).  A 
good portion of the mathematical development above is from an internal document entitled 
“Cooperative Electronic Attack Using Range Delay-Based Deception” by M. Pachter and P. 
Chandler.  

Figures XV and XVI below effectively explore eqs. (15) and (16) by plotting ECAV 
trajectories for various initial conditions.  The equations are solved using the MATLAB function, 
ode45, with a constant time step.  For each equation/figure, the initial conditions are carefully 
selected to show the minimum and maximum r0 values yielding a flyable ECAV trajectory for a 
full 90 degrees, and one initial condition where the trajectory runs into the bound represented by 
(17) before θ = 90 degrees is reached.  Note that in both cases the maximum r0 value yields an 
ECAV trajectory that switches from eq. (15) to (16) or vice versa at 45 degrees. 

Using Eq. 15

θ = 30°

r0 = 0.2

ψ = 45°

Using Eq. 15

θ = 90°

r0 = 0

ψ = 45°

Using Eqs. 15 and 16

θ = 90°

r0 = 0.1136

ψ = 45°

Phantom track, α  = 2
ECAV trajectory
r⋅θdot = 1 boundary

Radar LOS

 
Figure XV: Constant speed ECAV trajectory solutions for a constant-speed, constant-course 
phantom track, starting with eq. (15) 
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Using Eq. 16

θ = 25°

r0 = 0.51

ψ = 45°

Using Eq. 16

θ = 90°

r0 = 0.492

ψ = 45°

Using Eqs. 16 and 15

θ = 90°

r0 = 0.5

ψ = 45°

Phantom track, α  = 2
ECAV trajectory
r⋅θdot = 1 boundary

Radar LOS

 
Figure XVI: Constant speed ECAV trajectory solutions for a constant-speed, constant-course 
phantom track, starting with eq. (16) 
 

From observing Figures XV and XVI, the sizes of the sets of initial conditions yielding 
complete ECAV trajectories for a full 90 degrees are small compared to R0, which is one.  In 
addition, these results are for no additional limitations on the ECAV dynamics.  Figures XVII 
and XVIII below show how the size of the sets of initial conditions yielding complete ECAV 
trajectories for a full 90 degrees (hereafter called valid initial conditions in this section) varies 
with both phantom track speed and heading, for both eq. (15) and eq. (16). 
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Figure XVII: How the set size of valid initial conditions varies with α and ψ for eq. (15) 
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Figure XVIII: How the set size of valid initial conditions varies with α and ψ for eq. (16) 
 

From observing Figures XVII and XVIII, the size of the sets of valid initial conditions is 
inversely proportional to the speed of the phantom track.  The size dependence on the track’s 
heading is more complicated.  For eq. (15), the size is zero below 37.5 degrees and reaches a 
maximum at 90 degrees.  For eq. (16), the size has a maximum at 22.5 degrees and reaches zero 
again at 52.5 degrees, which is 90 degrees minus 37.5 degrees.  No further insight is forthcoming 
on why the size of the sets of valid initial conditions behaves the way it does since it depends on 
a numerical solution to eq. (15) and/or (16). 
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VII. General Theory for ECAV Trajectory Bounds and Solutions 
 

Because the assumption of only a constant speed ECAV puts severe limitations on its 
valid initial conditions and trajectories, it is beneficial to move the scenario closer to reality by 
allowing the ECAV and phantom track speeds to vary within some bounded range.  In addition, 
it is now assumed that the ECAV has two fixed antennas, each mounted on one side of the 
ECAV with less than a 90-degree look angle, φErange, from its central axis (see Figure XIX 
below).  Hence, the ECAV can no longer send pulse returns to a radar at any course angle, φE. 

υE

φErange

Region of antenna operation

Region of antenna operation

 
Figure XIX: ECAV with fixed antennas not covering a full 360 degrees 
 

For the rest of this study, the following ranges are used in determining ECAV trajectory 
bounds and solutions. 
 
 υE ~ ± 20 % 
 φE ~ 90 ° ± 60 ° 
 α ~ ± 20% 

 
Mainlobe deception is again assumed, so the ECAV has one DOF, which will be constrained in 
different ways to create several ECAV dynamic systems for exploration of the ECAV’s flyable 
range given a phantom track.  For ease of comparison, the following non-dimensional variables 
are used, with υEm = 1, R0 = 1, and θ 0 = 0. 
 

t
R

t Em

0

υ
→   

0R
rr →  

Em

T

υ
υ

α →   
0R

RR →  

Em

E
E υ

υ
υ →  

 
Given these definitions and the ranges listed above for υE, φE, and α, the minimum and 
maximum values for these same variables are as follows. 
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 8.0min =Eυ  (22) 
 2.1max =Eυ  

 
6min
πφ =E  

 
6

5
max

πφ =E  

 αα 8.0min =  
 αα 2.1max =  
 
Given a generic phantom track and the previously defined non-dimensional variables, the 
appropriate variables and their relations for the track and for developing ECAV dynamic systems 
are shown below in Figure XX.  For definitions of the basic ECAV and phantom track variables, 
see Figure VII above. 

θ0=0
r

R

R0=1

rdot

r⋅θdot

Rdot

R⋅θdot

υE

α

θ

φE

φT

radar

E

T

 
Figure XX: Variables and relations for an ECAV with variable speed and a generic phantom 
track with variable speed 
 

The basic equations of motion for the ECAV and phantom target, using polar 
coordinates, are as follows.  Every derivative is taken with respect to time.  An equation for 
ECAV time delay, td, is also included. 
 
 0)0(,cos rrr EE == φυ  (23) 

 0)0(,sin == θφ
υ

θ E
E

r
 (24) 

 
 1)0(,cos == RR Tφα  (25) 
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 0)0(,sin == θφαθ Tr
 (26) 

 

 )]()([(
2
1)( trtRcttd −=  (27) 

 
Without loss of generality, θ  is assumed positive and given by some pre-determined phantom 
track.  Six ECAV dynamic systems are now presented below, which can be developed from eqs. 
(23) and (24) by setting one ECAV variable.  All systems include an algorithm for choosing 
initial conditions that satisfy the ranges in (22), differential equations necessary to solve for the 
ECAV trajectory, and bounds resulting from (22) that must be satisfied for all time.  A subscript 
c indicates that the corresponding variable is constant. 
 

a. Constant speed, υEc 
 
 choose  maxmin EEcE υυυ ≤≤  

 then choose 
0

0
0

minsin
θ
υ

θ
φυ EcEEc r ≤≤  

 
 0

22 )0(,)( rrrr Ec =−±= θυ , where (28) 
 

ttrts Ec ∀>−= ,0])([)( 22 θυ  must be satisfied, or if s(t) = 0 condition (18) must be 
satisfied to switch from the (+) to (–) solution or vice versa, and 
 

ttr

Ec
E ∀≤ ,)(sin min υ

θφ  must be satisfied for course 

 
b. Constant course, φEc 

 
 choose  maxmin EEcE φφφ ≤≤  

 then choose 
0

max
0

0

min sinsin
θ

φυ
θ

φυ EcEEcE r ≤≤  

 
 0)0(,cot rrrr Ec == φθ , where (29) 
 

 ttr
E

Ec
E ∀≤≤ ,

sin
)(

maxmin υ
φ
θυ  must be satisfied for speed 

 
c. Constant heading, hEc 

 
 choose  0max0min θφθφ +≤≤+ EEcE h  and define 00 θφ −= EcE h  
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 then choose 
0

0max
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0min sinsin
θ
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θ
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 0)0(),(cot rrtrr E == φθ , where (30) 
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d. Constant speed rate, Ecυ  
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trts ∀>= ,0)(  must be satisfied, or if s(t) = 0 can switch to Ecυ−  and continue the 

solution by perturbing r  across zero, 
 
 ttrr EE ∀≤+≤ ,])([ max

22
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e. Constant turn rate, trEc 
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f. Constant acceleration, aE 
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System (a) simply contains a reformulation of eqs. (15) and (16) for a range of constant ECAV 
speeds.  System (b) allows the choice of a constant ECAV course, which is actually relative to θ 
(see Figure XX above); a course of 90 degrees would result in a circular trajectory.  Equation 
(29) in system (b) may actually be solved explicitly for r(t), but this solution is not a concern.  
System (c) allows the choice of a constant ECAV heading, which means the ECAV will fly in a 
straight line with the specified heading.  Equation (30) may also be solved explicitly for r(t) if 
the system is autonomous, i.e. θ is not a function of time.  System (d) allows the choice of a 
constant ECAV speed rate and is not too useful since s(t) quickly reaches zero for most initial 
conditions.  If autonomous, Equation (31) is singular on 0=r  except when the constant speed 
rate is zero.  System (e) allows the choice of a constant ECAV turn rate and is extremely useful 
because it can often be used to find the minimum and maximum initial conditions for which a 
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flyable ECAV trajectory exists for a specified range of θ.  If autonomous, Equation (32) is 
singular on r = 0, and invariant on 0=r  when the constant turn rate is zero.  System (f) allows 
the choice of a constant ECAV acceleration (time derivative of ECAV velocity) and is more 
useful when a given phantom track is circular in form so that a constant acceleration greater 
(less) than the inherent centripetal acceleration causes the ECAV to spiral in (out) relative to the 
radar.  Equation (33) works best with the minus sign in front of the square root and has a saddle 
when autonomous.  If eqs. (30) - (33) are not autonomous but depend explicitly on time, they 
may still possess the autonomous system characteristics stated above. 

The variable definitions and minimum/maximum values for ECAV speed and course in 
(22) give rise to the following θr -boundary lines for the ECAV, which are similar in concept to 
condition (17) with a constant speed ECAV. 
 

 
θθ

υ 8.0)( min == Etr  (34) 

 
θθ

υ 2.1)( max == Etr  (35) 

 
θθ

φυ 4.0sin
)( minmin == EEtr  (36) 

 
θθ

φυ 6.0sin
)( minmax == EEtr  (37) 

 
The ECAV’s range may not exceed (34) at any time because this would require it to fly faster 
than its maximum speed.  If the ECAV range decreases below (35), the ECAV may continue its 
trajectory, but may not fly perpendicular to its current LOS to the radar since it must have a 
nonzero r -component to fly above its minimum speed.  The ECAV’s range may not decrease 
below (36) at any time because this would rotate its fixed antennas out of range of the radar even 
at minimum speed (see Figure XIX above).  If the ECAV range decreases below (37), the ECAV 
may continue its trajectory, but only at a speed less than its maximum speed.  

For this analysis on ECAV trajectory bounds, it is beneficial to convert the phantom 
target speed range into a larger pseudo-range for the ECAV speed with the phantom target speed 
resumed to constant.  To make this conversion, the effect of changing α to αmin and αmax on the 
θr -boundary lines (34) - (37) is determined and maximized to produce a new set of θr -

boundary lines for the ECAV speed pseudo-range.  The effect of α on θ  for a straight-line 
phantom track is given as follows, using eqs. (19) – (21), with θ  solved explicitly as a function 
of θ. 
 

 

)sin(
sincos2

)(sin
sin1

sin)(

2

2

θψπ
θψ

θψπ
θ

ψαθθ

−−
−

−−
+

=  (38) 

 
Conveniently, θ  is directly proportional to α; therefore, the new θr -boundary lines are as 
follows for a straight-line phantom track, where υEpsmin and υEpsmax are defined in eqs. (39) and 
(40), respectively. 
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θθ

φυ 33.0sin
)( minmin == EEpstr  (41) 

 
θθ

φυ 75.0sin
)( minmax == EEpstr  (42) 

 
Figure XXI below is an exported frame from a MATLAB-generated video and illustrates 
visually how (34) and (35) have been changed to (39) and (40), respectively.  This visual 
explanation is similar for the changes made to convert (36) and (37) to (41) and (42), 
respectively. 

Radar

Phantom track, α = 2 + 0%

r⋅θdot boundary for υE = 1

r⋅θdot boundary range for υE ± 20%

 
Figure XXI: Conversion of phantom track speed range into larger ECAV speed pseudo-range 
 

In Figure XXI, the gray boundary represents the outer limit where α is decreased to αmin, 
which effectively moves the black boundary range for υE ± 20 % – both curves – out to the gray 
boundary; at this point, the outer black boundary coincides with the gray boundary.  Likewise, 
the cyan boundary represents the inner limit where the black boundary range may be moved 
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when α is increased to αmax.  It is important to realize that these lower and upper limits – the 
cyan and gray curves – may not coexist at any instant in time because α may only be one value 
at any time.  This fact is important primarily in the case of multiple ECAVs and multiple radars 
because it constrains all ECAVs to be within the υE-boundary range at any given time, even 
though that range may move in and out as shown in Figure XXI.  When changing α to 
accommodate an ECAV’s desired position or speed, another consideration is that α will have to 
modulate in a continuous and believable fashion especially if the radar is operating at a high PRF 
(see Figure IV above). 

To further enhance the assessment of an ECAV’s flyable range given a phantom track 
and some range of θ, the following speed isolines may also be used, where R(t) is given by the 
phantom track. 
 

 )()( min tRtr Eps

α
υ

=  (43) 

 )()( max tRtr Eps

α
υ

=  (44)



34 

VIII. ECAV Bounds for a Straight-Line Phantom Track 
 

The theory presented in the previous section for treating ranges on ECAV velocity, 
course, and the velocity of the phantom track is now utilized to conduct a survey of the ECAV 
bounds for a constant-course constant-speed phantom track.  The equations for this type of 
phantom track, taken from the internal document by M. Pachter and P. Chandler, are shown 
below in polar coordinates and are identical to eqs. (19) - (21). 
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Using eqs. (45) - (47) and with α = 2 and ψ = 45 degrees, a phantom track is plotted along with 
the boundaries and isolines corresponding to (39) - (42) and (43) - (44), respectively, in Figure 
XXII below.  The yellow lines represent a flyable ECAV range for θ = 90 degrees.  This flyable 
range represents the union of all positions the ECAV could visit on certain trajectories and still 
be able to create a phantom track through 90 degrees. 
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φE = 30° (υE = 1.5)
φE = 30° (υE = 0.67)
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Radar LOS
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Figure XXII: ECAV flyable range for a constant-course constant-speed phantom track, θ = 90 ° 
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Many ECAV trajectories – solved using the six systems presented in the previous section 

– were used to test and verify the results shown in Figure XXII.  Plots of some of these 
trajectories and the MATLAB code used to generate them are given in the Appendices.  The 
flyable range bounded by the pseudo-speed isolines is valid since any trajectory parallel to and 
between these two isolines is within the ECAV speed pseudo-range and course range.  The 
additional part of the flyable range, defined where the green curves are less than the υE = 0.67 
isoline, is actually bounded by a constant speed ECAV trajectory solution using system (a), 
where the ECAV is initially/finally on the red boundary, i.e. its course is at φEmin.  For an ECAV 
starting on the right trajectory curve and running into the 67.0=θr  boundary, it could then 
switch to a different system – such as system (b) with φE = 90 degrees – to create a circular 
trajectory and switch back to the constant velocity system with υE = 0.67 when it again crossed 
the 67.0=θr  boundary.  This line of reasoning as well as many flyable ECAV trajectories 
produced using a constant turn rate with system (e) provide ample evidence for the flyable range 
below the speed isolines in Figure XXII. 

The right “black hole” in Figure XXII is an area that can be entered by the ECAV, but 
once the ECAV is in this region it cannot exit back into the flyable range; it will run into the 

5.1=θr  boundary and stop.  To explain this mathematically, the following equation for the 
ECAV speed is used. 
 
 22 )( θυ rrE +=  (48) 
 
Taking a point on the υE = 1.5 isoline that bounds the black hole, if the absolute value of r  is 
decreased, which corresponds to entering the black hole, then eq. (48) says that υE will also 
decrease.  This allows the ECAV to enter the black hole because in doing so it will be flying 
within its speed pseudo-range.  However, for an ECAV to exit, the absolute value of r  would 
have to increase, which by eq. (48) requires that the ECAV fly faster than its maximum pseudo-
speed.  A similar argument can be used to show that the region labeled “off limits” is an area that 
can be exited by the ECAV but not entered from its flyable range.  The left “black hole” is an 
area that, once entered, will require that the ECAV turn in towards the radar at a progressive rate 
to stay within its speed pseudo-range; at some point in this process, the ECAV will reach its 
angle bound between the orange and red curves where its fixed antennas rotate out of range of 
the radar – all before θ = 90 degrees is reached. 

In addition to the speed and course bounds discussed above, there exist ultimate θ bounds 
for ECAV trajectories given a straight-line phantom track.  Figure XXIII below shows a possibly 
conservative estimate for these bounds. 
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θ = 90°
ψ = 60°

Phantom track, α  = 2
υE = 1.5 isoline
υE = 0.67 isoline
r⋅θdot = 1.5 boundary
r⋅θdot = 0.67 boundary
φE = 30° (υE = 1.5)
φE = 30° (υE = 0.67)

Radar LOS
ECAV trajectory

 
Figure XXIII: Ultimate θ bounds for ECAV trajectories given a constant-course constant-speed 
phantom track 
 

From observing Figure XXIII, both speed isolines intersect their corresponding angle 
bounds when ψ = 60 degrees.  If an ECAV were flying parallel to these isolines, it would reach 
its angle bound at this point – 60 degrees off of the shortest LOS from the radar to the phantom 
track.  Note that this corresponds directly to the range chosen for φE, which was 90 ± 60 degrees.  
It may be possible for the ECAV to continue the phantom track for greater values of θ by starting 
on a high speed isoline and turning in towards the radar right before it reaches its angle bound; 
however, this possibility was not explored. 

The analysis in this section is modular in that it is applicable to any number of ECAVs 
and the same number of radars, each on an individual basis.  The parameter ψ of the phantom 
track is simply changed for each ECAV so that together the team creates one coherent straight-
line phantom track with speed α. 
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IX. ECAV Bounds for a Simple Circular Phantom Track  
 
 The theory presented in Section VII is again utilized to conduct a survey of the ECAV 
bounds for a circular phantom track with the radar placed at the circle’s center.  The equations 
for this type of phantom track, taken from the Pachter and Chandler internal document, are 
shown below in polar coordinates. 
 
 1)( ≡tR    (49) 
 
 tt αθ =)(   (50) 
 
 αθ ≡)(t    (51) 
 
With eqs. (49) - (51) representing the circular phantom track, ECAV systems (a) through (f) are 
now autonomous and may be analyzed using phase-plane techniques if so desired.  Because of 
this simplification, the simple circular phantom track presents a good opportunity to more 
thoroughly analyze the ECAV systems developed in Section VII.  Using eqs. (49) - (51) and with 
α = 2, a phantom track is plotted along with the boundaries and isolines corresponding to (39) - 
(42) and (43) - (44), respectively, in Figure XXIV below.  The yellow lines represent a flyable 
ECAV range for θ = 180 degrees.  This flyable range represents the union of all positions the 
ECAV could visit on certain trajectories and still be able to create a phantom track through 180 
degrees. 
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Figure XXIV: ECAV flyable range for a simple circular phantom track and θ = 180 degrees 
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Many ECAV trajectories – solved using the six systems presented in Section VII – were 

used to test and verify the results shown in Figure XXIV.  Some of these trajectories are given in 
the Appendices.  For the simple circular phantom track, the minimum and maximum pseudo-
speed isolines are not identified because they coincide with the 67.0=θr  and 5.1=θr  
boundaries; this is advantageous because it means the ECAV has no ultimate θ bounds as with 
the straight-line phantom track (see Figure XXIII above).  The flyable range bounded by the 
speed isolines is valid since any circular ECAV trajectory concentric with these isolines will be 
within the ECAV speed pseudo-range and course range.  The additional part of the flyable range, 
defined where the green curves are less than the υE = 0.67 isoline, is actually bounded by a 
constant speed ECAV trajectory solution using system (a), where the ECAV is initially/finally on 
the red boundary, i.e. its course is at φEmin.  For an ECAV starting on the right trajectory curve 
and running into the 67.0=θr  boundary, it could then switch to a different system to create a 
circular trajectory and switch back to the constant velocity system with υE = 0.67 when it reaches 
the second trajectory curve on the left.  This line of reasoning as well as many flyable ECAV 
trajectories produced using a constant turn rate with system (e) provide ample evidence for the 
flyable range below the speed isolines in Figure XXIV. 
 The region labeled “off limits” in Figure XXIV is an area that cannot be entered or exited 
by the ECAV because it is bounded by 5.1=θr .  Taking a point on this boundary, to enter or 
exit the off limits region requires r  to be nonzero, which increases the ECAV speed above its 
pseudo-maximum according to eq. (48).  The “black hole” is an area that, once entered, will 
require that the ECAV turn in towards the radar at a progressive rate to stay within its speed 
pseudo-range; at some point in this process, the ECAV will reach its angle bound between the 
orange and red curves where its fixed antennas rotate out of range of the radar – all before θ = 
180 degrees is reached. 

Although simple and useful for understanding ECAV systems and trajectory bounds, the 
analysis in this section alone is not modular.  It is applicable at most to only one ECAV trying to 
deceive a radar located at the center of the circular phantom track.  However, this information 
combined with the general circular phantom track analysis presented in the next section will 
provide the modularity needed for a team of ECAVs to create one coherent circular phantom 
track. 
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X. ECAV Bounds for a General Circular Phantom Track 
 
 The theory presented in Section VII is once more utilized to conduct a survey of the 
ECAV bounds for a circular phantom track with the radar placed arbitrarily with reference to the 
circle’s center.  The equations for this type of phantom track, taken from the Pachter and 
Chandler internal document and modified for corrections, are shown below in polar coordinates.  
Only two of the phantom track’s three additional parameters, a, b, and ρ, must be specified. 
 

 tbtaatR
ρ
αρ

ρ
αρρ sin2cos221)( −−+=  (52) 

 

 ξπξπξπ
ρ
αξθ +≤≤−+−
















−= ttxtt ,])([sgn)( , where (53) 

 ),arg( ab=ξ  

 







−−+−= tbtabatbtatx

ρ
αρ

ρ
αρ

ρ
α

ρ
αρ sincos,cossinarg)( 22  

 

 







−−= tbta

tR
t

ρ
α

ρ
αραθ sincos

)(
)( 2 , where (54) 

 
 21 ba −+=ρ  
 
 a ~ Distance from circle center to radar in x-direction (horizontal) 
 b ~ Distance from circle center to radar in y-direction (vertical) 
 ρ ~ Radius of the circular phantom track 
 
Using eqs. (52) - (54) and with α = 2, a = -0.38, and b = 0.22 (radar placed inside the circle), a 
phantom track is plotted along with the boundaries and isolines corresponding to (39) - (42) and 
(43) - (44), respectively, in Figure XXV below.  The yellow lines represent a flyable ECAV 
range for a circular phantom track of 180 degrees, which corresponds to θ = 227 degrees.  This 
flyable range represents the union of all positions the ECAV could visit on certain trajectories 
and still be able to create a 180-degree circular phantom track.  Application of the ECAV speed 
pseudo-range developed in Section VII is questionable here since the proportional dependence of 
θ on α was not verified mathematically for eq. (54); in fact, it may not be possible to solve for θ  
as a function of θ for the general circular phantom track.  However, the form of the equation and 
θ 0 both suggest that this dependence still holds. 
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Figure XXV: ECAV flyable range for a general 180-degree circular phantom track with the 
radar placed inside the circle 
 

Many ECAV trajectories – solved using the systems (a) and (e) presented in Section VII 
– were used to test and verify the results shown in Figure XXV.  Some of these trajectories are 
given in the Appendices.  For the general circular phantom track, the relevant isolines and 
boundaries plotted in Figure XXV look a good deal like those plotted for the straight-line 
phantom track (see Figure XXII above) except curved around in sort of an egg-shape.  The 
flyable range bounded by the speed isolines is valid since any ECAV trajectory coinciding with a 
υE isoline between these two will fly at a constant speed and be within the ECAV speed pseudo-
range and course range.  The additional part of the flyable range, defined where the green curves 
are less than the υE = 0.67 isoline, is actually bounded by a constant speed ECAV trajectory 
solution using system (a), where the ECAV is initially/finally on the red boundary, i.e. its course 
is at φEmin.  For an ECAV starting on the right trajectory curve and running into the 67.0=θr  
boundary, it could turn into an appropriate speed isoline in between the minimum and maximum 
isolines and switch back to the constant velocity system with υE = 0.67 when it again reaches the 

67.0=θr  boundary.  This line of reasoning as well as some flyable ECAV trajectories produced 
using a constant turn rate with system (e) provide evidence for the flyable range below the speed 
isolines in Figure XXV.  It has been verified that mirroring the radar’s location about the 
phantom circle center’s y-axis (vertical) produces symmetric bounds and flyable ECAV 
trajectories about this axis. 
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 The “black hole” and “off limits” regions are analogous to those shown for the straight-
line track in Figure XXII above.  Their explanations are likewise similar and so are omitted here. 

Using eqs. (52) - (54) and with α = 2, a = -0.6, and b = 0 (radar placed outside the circle), 
a phantom track is plotted along with the boundaries and isolines corresponding to (39) - (42) 
and (43) - (44), respectively, in Figure XXVI below.  The yellow lines represent a flyable ECAV 
range for a circular phantom track of approximately 120 degrees, which corresponds to θ = 40 
degrees; the phantom track can be generated no further given the placement of the radar.  This 
flyable range represents the union of all positions the ECAV could visit on certain trajectories 
and still be able to create a 180-degree circular phantom track. 

0.
17 (0.6,0)

θ = 40°

0.
75

Phantom track, α  = 2
υE = 1.5 isoline
υE = 0.67 isoline
r⋅θdot = 1.5 boundary
r⋅θdot = 0.67 boundary
φE = 30° (υE = 1.5)
φE = 30° (υE = 0.67)

Radar LOS
ECAV trajectory

 
Figure XXVI: ECAV flyable range for a general circular phantom track with the radar placed 
outside the circle 
 

ECAV trajectories solved using system (a) from Section VII were used to test and verify 
the results shown in Figure XXVI.  The flyable range bounded by the green constant speed 
ECAV trajectory curves was validated by choosing several initial conditions in between 0.17 and 
0.75 and solving the constant speed ECAV trajectory.  Note that the upper bound on the flyable 
range now consists partly of the phantom track itself.  The υE = 0.67 isoline does not provide a 
lower bound for the flyable range because it intersects its own angle bound before θ = 40 
degrees.  Unfortunately, the main result of placing the radar outside the circular phantom track is 
a severe limitation on how long the phantom track may be generated.  This result is due mainly 
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to the angle/antenna bounds imposed on the ECAV; otherwise, the ECAV could generate a 180-
degree circular phantom track and remain within its speed pseudo-range. 

The analysis in this section, combined with that for the simple circular phantom track in 
the previous section, now provides a modular approach for a circular phantom track applicable to 
any number of ECAVs and the same number of radars, each on an individual basis.  The 
parameters a and b of the phantom track are simply changed for each ECAV so that together the 
team creates one coherent circular phantom track.  However, if any radar is placed outside the 
circular phantom track, it will be generated for less than 180 degrees due to the ECAV’s antenna 
limitations (see Figure XIX above). 
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XI. Generalized Bounds for ECAV Initial Conditions and Flyable Range 
 

Given the ECAV flyable ranges developed for modular straight-line and circular phantom 
tracks and presented in Figures XXII through XXVI above, the following equations define the 
range of valid initial conditions for an individual ith ECAV to start from and generate a desired 
phantom track for a desired range of θ, where (R0)i is a dimensional length. 
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Due to the conversion of the phantom track speed range into a larger ECAV speed pseudo-range 
in Section VII, the initial conditions of multiple ECAVs are constrained to stay within the 
original θr  boundary range corresponding to their specified υE range of ± 20 % (see Figure XXI 
above) for whatever value α actually is within its range of ± 20 %.  Therefore, eqs. (55) and (56) 
specify a maximum range, in which the selected initial conditions for each ECAV must also 
satisfy the following condition, where I contains an ordered set of index numbers for each ECAV 
participating. 
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In addition to the range of valid initial conditions, the time-dependent upper and lower 

bounds on the flyable range of an individual ith ECAV generating a desired phantom track for 
some range of θ are given below, where Ri(t) is dimensional. 
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 [r*(t)]i solves eq. (28) with υEc = υEpsmin, θ  = iθ , t0 = 0, and r0 = (r0min)i 
 [r**(t)]i solves eq. (28) with υEc = υEpsmin, θ  = iθ , t0 = (cos ψ)/α and r0 = (rfmin)i 
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Equations (59) and (60) specify a maximum time-dependent flyable range, in which each 
ECAV’s position must also satisfy conditions (57) and (58) for all time, with the following 
substitutions. 
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XII. Decentralized Cooperative Control Problem Formulation 
 

As a first cut, the decentralized cooperative control problem – one of team coordination – 
is posed using the concept of coordination functions and illustrated for a team of three ECAVs 
using mainlobe deception on three radars by creating a straight-line phantom track.  To begin, 
assume a constant-course constant-speed phantom track from right to left is desired, and that 
bounded ranges for υE, φE, and α have already been given.  Let n be the number of radars – equal 
to the number of ECAVs – and define the following parameters. 
 
 numbersnaturalnIni ,],1[,,,2,1 Ν∈== …  
 
 planenumberrealRrdrdrd iyixi ,),( 2∈=  ~ location of ith radar 
 
 iR )( max    ~ maximum range of ith radar 
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max )()()(  ~ maximum-range circle centered at rdi 

 
 β    ~ absolute course of the phantom track 
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 += min22 Eicone φππβ  ~ ultimate θ bounds centered at rdi 

 
Given the above parameters, the following function can be defined, which maps these parameters 
into the set of functions that will later be used as inputs for each ECAV’s coordination function. 
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Figure XXVII illustrates the mathematics introduced so far, where n = 3 radars.  The blue lines 
represent functions in TB and are all possible candidates for the team-optimal phantom track, i.e. 
each may be generated given the three-radar situation and taking into account each radar’s 
maximum range and the angle/antenna bounds associated with the ECAVs. 
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Figure XXVII: Decentralized Cooperative Control Problem for three radars and a straight-line 
phantom track, stage one 
 

Three variables have yet to be chosen before a given phantom track is decided for the 
ECAV team.  These variables and the approach to choosing them for now are given below. 
 

 f(x) ~ Choice of the phantom track as a function of x is determined by the cooperative 
control process 

 x0 ~ For simplicity, assume that the longest length phantom track is desirable, so 
choose x0 by using the right-side boundary of B, x0(y), and set x0(y) > x by the 
right-to-left assumption 

 α ~ Since the phantom target speed already has a built-in range of ± 20 %, assume 
its nominal value is fixed by the type of phantom target being created, but 
ensure α > 1.5 to use the full ECAV speed and phantom target speed ranges 

 
Given the variables f(x), x0, and α, the following function may be defined, which can use these 
variables to determine a valid initial condition range and/or time-dependent bounds for the 
flyable range of each ECAV. 
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The last five equations shown above are specific to the straight-line phantom track case.  
Conditions (57) and (58) must be applied to the choice of initial conditions and positions over 
time for each ECAV as in Section XI.  Two cost functions may be defined for each ECAV as 
follows, where the price could depend on a variety of factors such as fuel or radiated power 
required. 
 
 iiii ceinitialprirangeric →− ))(,( 00 θ  
 
 )())(,)(,)(,( 00 ttimepricetrangetrrangertc iiiiii →−− θθ  
 
Note that the time-dependent price of each ECAV is not defined to depend on the positions of 
other ECAVs despite conditions (57) and (58); rather the price simply depends on the maximum 
flyable range of each ECAV before conditions (57) and (58) are applied to actual positions.  
Finally, a price based on initial conditions and the flyable ranges of each ECAV can be 
computed as a function of the track choice, f(x), which leads to the following coordination 
function for each ECAV with three variations possible. 
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Each ECAV passes only a coordination function, hi, to the team leader.  The team leader then 
uses all n coordination functions to find the function, f(x), that will minimize the total cost of the 
team and specify the team-optimal phantom track for the ECAVs to create.  If the first version of 
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the coordination function is used, then each ECAV must know its own radar’s location and 
maximum range, x0(y), and the phantom track speed.  If the second or third versions of the 
coordination function are used, then each ECAV must additionally know the locations and 
maximum ranges of all additional radars involved because its time-dependent flyable range 
depends on where the phantom track stops as well as starts.  If the flyable ranges were defined to 
be only the space in between minimum and maximum pseudo-speed isolines, then the flyable 
range for each ECAV would only be a function of x.  In addition, if version two of the 
coordination function were used, then each ECAV would only need to know its own radar’s 
location and maximum range. 

Figure XXVIII below illustrates the situation once the necessary variables, f(x), x0, and α, 
are chosen to specify a team-optimal phantom track as discussed above.  The bold blue line 
represents the phantom track chosen optimally by way of f(x), and the yellow lines represent the 
resulting range of valid initial conditions from which each corresponding ECAV may start at 
time zero.  Time-dependent flyable ranges for each ECAV are not shown in the figure. 
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Figure XXVIII: Decentralized Cooperative Control Problem for three radars and a straight-line 
phantom track, stage two 
 
Besides using coordination functions, several other methods are available in treating the 
decentralized cooperative control problem.  The common goal is to use the minimum amount of 
communication – or minimum amount of the team state information, such as individual ECAV 
positions – to achieve the desired level of performance in choosing a team-optimal phantom 
track.  One thing to remember is that an estimation problem may also be buried in this control 
problem due to the inaccuracies of ECAV and radar locations. 
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XIII. Conclusion 
 

The feasibility of both mainlobe and sidelobe deception has been considered.  Mainlobe 
deception is technically easier to accomplish but will only create one phantom track if the 
number of ECAVs equals the number of radars voting.  Sidelobe deception is more complex but 
will allow multiple phantom tracks to be generated according to the number of sidelobes within 
range.  However, if there are three or more radars voting, only one phantom track is possible.  In 
addition, operational frequency may significantly alter a radar’s sidelobes.  For both mainlobe 
and sidelobe deception, uncertainty analysis based on inaccuracies in ECAV/radar locations and 
ECAV time delay indicates that both deception methods could probably work at fine resolutions 
in a radar network.  The problem of estimating ECAV and radar locations will probably have to 
be solved together with the cooperative control problem. 

For mainlobe deception, assuming ECAV speed to be constant severely limits the size of 
the sets of initial conditions yielding complete ECAV trajectories for a given range of θ.  
Therefore, assuming ranges for the ECAV and phantom track speeds and including an angle 
bound to account for the ECAV having fixed antennas produces a more realistic flyable range for 
the ECAV given a desired range of θ for the phantom track.  ECAV trajectories and bounds can 
be computed given a straight-line or circular phantom track – all in a modular way for n radars 
and ECAVs.  The ECAV trajectory solutions also require setting one ECAV variable whether it 
be speed, course, heading, turn rate, speed rate, or acceleration; systems are developed for this 
approach and some resulting ECAV trajectory solutions are shown in the Appendices for 
straight-line, simple circular, and general circular phantom tracks. 

Based on the general theory for computing initial condition ranges and time-dependent 
flyable ranges for a given phantom track, the decentralized cooperative control problem may be 
solved under certain assumptions using coordination functions.  Of course, there are other ways 
such as optimalization to solve this partial-information team coordination challenge.  The “tallest 
pole” or biggest challenge in actually solving the decentralized cooperative control problem for a 
desired level of performance is yet to be clearly identified; it could be the dynamic coupling of 
the ECAVs, communication, or the estimation problem of determining ECAV and radar 
locations while trying to generate a coherent team-optimal phantom track.
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XV. Appendices 
 
Appendix A: ECAV trajectory solutions for a straight-line phantom track 

ECAV Constant Speed Trajectory Solution for a Given Phantom Track

0.
75

θ = 90°

ψ = 45°

0.
33

Phantom track, α  = 2
υE = 1.5 isoline

υE = 0.67 isoline
r⋅θdot = 1.5 boundary
r⋅θdot = 0.67 boundary

φE = 30° (υE = 1.5)
φE = 30° (υE = 0.67)

Radar LOS
ECAV trajectory

 
 

ECAV Constant Heading Trajectory Solution for a Given Phantom Track

0.
75

θ = 90°

ψ = 45°

0.
5

0.
5

0.
33

Phantom track, α  = 2
υE = 1.5 isoline
υE = 0.67 isoline
r⋅θdot = 1.5 boundary
r⋅θdot = 0.67 boundary
φE = 30° (υE = 1.5)
φE = 30° (υE = 0.67)

Radar LOS
ECAV trajectory
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ECAV Constant Speed Rate Trajectory Solution for a Given Phantom Track

0.
61

θ = 90°

ψ = 45°

0.
49

0.
75

0.
33

Phantom track, α  = 2
υE = 1.5 isoline
υE = 0.67 isoline
r⋅θdot = 1.5 boundary
r⋅θdot = 0.67 boundary
φE = 30° (υE = 1.5)
φE = 30° (υE = 0.67)

Radar LOS
ECAV trajectory

ECAV Constant Course Trajectory Solution for a Given Phantom Track

0.
53

θ = 90°

ψ = 45°

0.
47

Phantom track, α  = 2
υE = 1.5 isoline
υE = 0.67 isoline
r⋅θdot = 1.5 boundary
r⋅θdot = 0.67 boundary
φE = 30° (υE = 1.5)
φE = 30° (υE = 0.67)

Radar LOS
ECAV trajectory

 



 53

ECAV Constant Turn Rate Trajectory Solution for a Given Phantom Track

0.
36

θ = 90°

ψ = 45°

0.
75

Phantom track, α  = 2
υE = 1.5 isoline
υE = 0.67 isoline
r⋅θdot = 1.5 boundary
r⋅θdot = 0.67 boundary
φE = 30° (υE = 1.5)
φE = 30° (υE = 0.67)

Radar LOS
ECAV trajectory

 
ECAV Constant Turn Rate Trajectory Solution for a Given Phantom Track

0.
32

θ = 90°

ψ = 45°

0.
42

0.
46 0.
7

Phantom track, α  = 2
υE = 1.5 isoline
υE = 0.67 isoline
r⋅θdot = 1.5 boundary
r⋅θdot = 0.67 boundary
φE = 30° (υE = 1.5)
φE = 30° (υE = 0.67)

Radar LOS
ECAV trajectory

 



 54

ECAV Constant Turn Rate Trajectory Solution for a Given Phantom Track

0.
24

θ = 90°

ψ = 45°

0.
43

0.
57

Phantom track, α  = 2
υE = 1.5 isoline
υE = 0.67 isoline
r⋅θdot = 1.5 boundary
r⋅θdot = 0.67 boundary
φE = 30° (υE = 1.5)
φE = 30° (υE = 0.67)

Radar LOS
ECAV trajectory

 
ECAV Constant Turn Rate Trajectory Solution for a Given Phantom Track

0.
33

θ = 90°

ψ = 45°

0.
39

Phantom track, α  = 2
υE = 1.5 isoline
υE = 0.67 isoline
r⋅θdot = 1.5 boundary
r⋅θdot = 0.67 boundary
φE = 30° (υE = 1.5)
φE = 30° (υE = 0.67)

Radar LOS
ECAV trajectory
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Appendix B: ECAV trajectory solutions for a simple circular phantom track 
ECAV Constant Speed Trajectory Solution for a Given Phantom Track

0.
75θ = 180°

0.
38

Phantom track, α  = 2
r⋅θdot = 1.5 boundary
r⋅θdot = 0.67 boundary
φE = 30° (υE = 1.5)
φE = 30° (υE = 0.67)

Radar LOS
ECAV trajectory

 
ECAV Constant Speed Trajectory Solution for a Given Phantom Track

0.
33θ = 180°

0.
17

Phantom track, α  = 2
r⋅θdot = 1.5 boundary
r⋅θdot = 0.67 boundary
φE = 30° (υE = 1.5)
φE = 30° (υE = 0.67)

Radar LOS
ECAV trajectory
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ECAV Constant Course Trajectory Solution for a Given Phantom Track

0.
75θ = 180°
0.

5
0.

5

0.
33

0.
33

Phantom track, α  = 2
r⋅θdot = 1.5 boundary
r⋅θdot = 0.67 boundary
φE = 30° (υE = 1.5)
φE = 30° (υE = 0.67)

Radar LOS
ECAV trajectory

 

ECAV Constant Speed Rate Trajectory Solution for a Given Phantom Track

0.
69θ = 180°

0.
75

0.
33

Phantom track, α  = 2
r⋅θdot = 1.5 boundary
r⋅θdot = 0.67 boundary
φE = 30° (υE = 1.5)
φE = 30° (υE = 0.67)

Radar LOS
ECAV trajectory
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ECAV Constant Heading Trajectory Solution for a Given Phantom Track

0.
47

θ = 90°

0.
53

Phantom track, α  = 2
r⋅θdot = 1.5 boundary
r⋅θdot = 0.67 boundary
φE = 30° (υE = 1.5)
φE = 30° (υE = 0.67)

Radar LOS
ECAV trajectory

 

ECAV Constant Acceleration Trajectory Solution for a Given Phantom Track

0.
75θ = 180°

0.
75

0.
33

0.
33

Phantom track, α  = 2
r⋅θdot = 1.5 boundary
r⋅θdot = 0.67 boundary
φE = 30° (υE = 1.5)
φE = 30° (υE = 0.67)

Radar LOS
ECAV trajectory
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ECAV Constant Turn Rate Trajectory Solution for a Given Phantom Track

0.
27θ = 180°

0.
75

Phantom track, α  = 2
r⋅θdot = 1.5 boundary
r⋅θdot = 0.67 boundary
φE = 30° (υE = 1.5)
φE = 30° (υE = 0.67)

Radar LOS
ECAV trajectory

 

ECAV Constant Turn Rate Trajectory Solution for a Given Phantom Track

0.
17θ = 180°

0.
68

Phantom track, α  = 2
r⋅θdot = 1.5 boundary
r⋅θdot = 0.67 boundary
φE = 30° (υE = 1.5)
φE = 30° (υE = 0.67)

Radar LOS
ECAV trajectory
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ECAV Constant Turn Rate Trajectory Solution for a Given Phantom Track

0.
33θ = 180°

0.
59

Phantom track, α  = 2
r⋅θdot = 1.5 boundary
r⋅θdot = 0.67 boundary
φE = 30° (υE = 1.5)
φE = 30° (υE = 0.67)

Radar LOS
ECAV trajectory
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Appendix C: Theoretical ECAV trajectory solutions for a simple circular phantom track 
with no antenna/angle limitations applied to the ECAV 

ECAV Constant Speed Trajectory Solution for a Given Phantom Track

0.
5

θ = 180°
0.

5
0.

5

Phantom track, α  = 2
r⋅θdot = 1.5 boundary
r⋅θdot = 0.67 boundary

Radar LOS
ECAV trajectory

 
ECAV Constant Acceleration Trajectory Solution for a Given Phantom Track

0.
5

θ = 180°

0.
5

0.
5

Phantom track, α  = 2
r⋅θdot = 1.5 boundary
r⋅θdot = 0.67 boundary

Radar LOS
ECAV trajectory
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Appendix D: ECAV trajectory solutions for a general circular phantom track 
ECAV Constant Speed Trajectory Solution for a Given Phantom Track

0.
33

(-1.3,-0.73)

θ = 193°

0.
75

Phantom track, α  = 2
υE = 1.5 isoline
υE = 0.67 isoline
r⋅θdot = 1.5 boundary
r⋅θdot = 0.67 boundary
φE = 30° (υE = 1.5)
φE = 30° (υE = 0.67)

Radar LOS
ECAV trajectory

ECAV Constant Speed Trajectory Solution for a Given Phantom Track

0.
33

(0.38,-0.22)

θ = 227°

0.
75

Phantom track, α  = 2
υE = 1.5 isoline
υE = 0.67 isoline
r⋅θdot = 1.5 boundary
r⋅θdot = 0.67 boundary
φE = 30° (υE = 1.5)
φE = 30° (υE = 0.67)

Radar LOS
ECAV trajectory
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ECAV Constant Turn Rate Trajectory Solution for a Given Phantom Track

(0.38,-0.22)

θ = 227°
0.

75

0.
3

Phantom track, α  = 2
υE = 1.5 isoline
υE = 0.67 isoline
r⋅θdot = 1.5 boundary
r⋅θdot = 0.67 boundary
φE = 30° (υE = 1.5)
φE = 30° (υE = 0.67)

Radar LOS
ECAV trajectory

 
ECAV Constant Turn Rate Trajectory Solution for a Given Phantom Track

(0.38,-0.22)

θ = 227°

0.
69

0.
34

Phantom track, α  = 2
υE = 1.5 isoline
υE = 0.67 isoline
r⋅θdot = 1.5 boundary
r⋅θdot = 0.67 boundary
φE = 30° (υE = 1.5)
φE = 30° (υE = 0.67)

Radar LOS
ECAV trajectory
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ECAV Constant Turn Rate Trajectory Solution for a Given Phantom Track

(0.38,-0.22)

θ = 227° 0.
34

0.
63

Phantom track, α  = 2
υE = 1.5 isoline
υE = 0.67 isoline
r⋅θdot = 1.5 boundary
r⋅θdot = 0.67 boundary
φE = 30° (υE = 1.5)
φE = 30° (υE = 0.67)

Radar LOS
ECAV trajectory
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Appendix E: MATLAB code for ECAV trajectory solutions for a straight-line phantom 
track (MATLAB code for the trajectories corresponding to circular phantom tracks is not 
included, but is very similar to the code shown below; the main differences are the 
phantom track equations and axis/text adjustments) 
 
%    ECAVPLOTRANGE 
% 
%    by Keith Purvis, August 2003 
% 
%    Shows a wide variety of ECAV trajectory solutions with different ECAV 
%        systems (constant velocity, constant course, constant turn rate,etc.) 
%        used for the solutions - all for a straight line phantom track and 
%        theta = 90 degrees 
 
clear all 
close all 
 
alpha=2; 
psi=pi/4; 
posnegEq=2; 
 
%-------------------------------------------------------------------------------- 
%Constant velocity, v_E 
constraint=1; 
constant=1.5; 
r0=constant/alpha; 
tstart=0; 
tfinal=1/(alpha*cos(psi))-0.0001; 
extras=0; 
ecavsimrange(alpha,psi,constraint,constant,posnegEq,r0,tstart,tfinal,extras,0); 
constant=2/3; 
r0=constant/alpha; 
ecavsimrange(alpha,psi,constraint,constant,posnegEq,r0,tstart,tfinal,extras,1); 
plot([0.33 0.75],[0 0],'y','LineWidth',6) 
hold off 
 
%-------------------------------------------------------------------------------- 
%Constant course, phi_E 
constraint=2; 
constant=pi/2; 
r0=1.5*sin(psi)/alpha-0.0001; 
tstart=0; 
tfinal=1/(alpha*cos(psi))-0.0001; 
extras=0; 
ecavsimrange(alpha,psi,constraint,constant,posnegEq,r0,tstart,tfinal,extras,0); 
r0=0.472; 
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ecavsimrange(alpha,psi,constraint,constant,posnegEq,r0,tstart,tfinal,extras,1); 
plot([0.47 0.53],[0 0],'y','LineWidth',6) 
hold off 
 
%-------------------------------------------------------------------------------- 
%Constant heading 
constraint=3; 
constant=pi-pi/4; 
r0=0.75-0.0001; 
tstart=0; 
tfinal=1/(alpha*cos(psi))-0.0001; 
extras=0; 
ecavsimrange(alpha,psi,constraint,constant,posnegEq,r0,tstart,tfinal,extras,0); 
constant=pi-pi/4-pi/25; 
r0=0.5; 
extras=0; 
ecavsimrange(alpha,psi,constraint,constant,posnegEq,r0,tstart,tfinal,extras,1); 
constant=pi-pi/4+pi/22.5; 
r0=0.5; 
extras=0; 
ecavsimrange(alpha,psi,constraint,constant,posnegEq,r0,tstart,tfinal,extras,1); 
constant=pi-pi/4; 
r0=0.334; 
extras=0; 
ecavsimrange(alpha,psi,constraint,constant,posnegEq,r0,tstart,tfinal,extras,1); 
plot([0.33 0.75],[0 0],'y','LineWidth',6) 
hold off 
 
%-------------------------------------------------------------------------------- 
%Constant turn rate at the minimum of 1.5/theta_dot 
constraint=4; 
constant=5.18; 
r0=[1.5*sin(psi)/alpha-0.0001;0]; 
tstart=cos(psi)/alpha; 
tfinal=0; 
extras=0; 
ecavsimrange(alpha,psi,constraint,constant,posnegEq,r0,tstart,tfinal,extras,0); 
tfinal=1/(alpha*cos(psi))-0.0001; 
extras=0; 
ecavsimrange(alpha,psi,constraint,constant,posnegEq,r0,tstart,tfinal,extras,1); 
 
constant=0; 
tfinal=0; 
extras=0; 
ecavsimrange(alpha,psi,constraint,constant,posnegEq,r0,tstart,tfinal,extras,1); 
tfinal=1/(alpha*cos(psi))-0.0001; 
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extras=0; 
ecavsimrange(alpha,psi,constraint,constant,posnegEq,r0,tstart,tfinal,extras,1); 
plot([0.36 0.75],[0 0],'y','LineWidth',6) 
hold off 
 
%-------------------------------------------------------------------------------- 
%Constant turn rate at the minimum of 1.35/theta_dot 
constraint=4; 
constant=5.18; 
r0=[1.35*sin(psi)/alpha-0.0001;0]; 
tstart=cos(psi)/alpha; 
tfinal=0; 
extras=0; 
ecavsimrange(alpha,psi,constraint,constant,posnegEq,r0,tstart,tfinal,extras,0); 
tfinal=1/(alpha*cos(psi))-0.0001; 
extras=0; 
ecavsimrange(alpha,psi,constraint,constant,posnegEq,r0,tstart,tfinal,extras,1); 
 
constant=3.6; 
tfinal=0; 
extras=0; 
ecavsimrange(alpha,psi,constraint,constant,posnegEq,r0,tstart,tfinal,extras,1); 
tfinal=1/(alpha*cos(psi))-0.0001; 
extras=0; 
ecavsimrange(alpha,psi,constraint,constant,posnegEq,r0,tstart,tfinal,extras,1); 
 
constant=2.79; 
tfinal=0; 
extras=0; 
ecavsimrange(alpha,psi,constraint,constant,posnegEq,r0,tstart,tfinal,extras,1); 
tfinal=1/(alpha*cos(psi))-0.0001; 
extras=0; 
ecavsimrange(alpha,psi,constraint,constant,posnegEq,r0,tstart,tfinal,extras,1); 
 
constant=-0.18; 
tfinal=0; 
extras=0; 
ecavsimrange(alpha,psi,constraint,constant,posnegEq,r0,tstart,tfinal,extras,1); 
tfinal=1/(alpha*cos(psi))-0.0001; 
extras=0; 
ecavsimrange(alpha,psi,constraint,constant,posnegEq,r0,tstart,tfinal,extras,1); 
plot([0.32 0.42],[0 0],'y',[0.46 0.7],[0 0],'y','LineWidth',6) 
hold off 
 
%-------------------------------------------------------------------------------- 
%Constant turn rate at the minimum of 1.01/theta_dot 
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constraint=4; 
constant=5.18; 
r0=[1.01*sin(psi)/alpha-0.0001;0]; 
tstart=cos(psi)/alpha; 
tfinal=0; 
extras=0; 
ecavsimrange(alpha,psi,constraint,constant,posnegEq,r0,tstart,tfinal,extras,0); 
tfinal=1/(alpha*cos(psi))-0.0001; 
extras=0; 
ecavsimrange(alpha,psi,constraint,constant,posnegEq,r0,tstart,tfinal,extras,1); 
 
constant=1.01; 
tfinal=0; 
extras=0; 
ecavsimrange(alpha,psi,constraint,constant,posnegEq,r0,tstart,tfinal,extras,1); 
tfinal=1/(alpha*cos(psi))-0.0001; 
extras=0; 
ecavsimrange(alpha,psi,constraint,constant,posnegEq,r0,tstart,tfinal,extras,1); 
 
constant=-0.61; 
tfinal=0; 
extras=0; 
ecavsimrange(alpha,psi,constraint,constant,posnegEq,r0,tstart,tfinal,extras,1); 
tfinal=1/(alpha*cos(psi))-0.0001; 
extras=0; 
ecavsimrange(alpha,psi,constraint,constant,posnegEq,r0,tstart,tfinal,extras,1); 
plot([0.235 0.244],[0 0],'y',[0.43 0.57],[0 0],'y','LineWidth',6) 
hold off 
 
%-------------------------------------------------------------------------------- 
%Constant turn rate at the minimum of 0.67/theta_dot 
constraint=4; 
constant=0; 
r0=[0.67*sin(psi)/alpha-0.0001;0]; 
tstart=cos(psi)/alpha; 
tfinal=0; 
extras=0; 
ecavsimrange(alpha,psi,constraint,constant,posnegEq,r0,tstart,tfinal,extras,0); 
tfinal=1/(alpha*cos(psi))-0.0001; 
extras=0; 
ecavsimrange(alpha,psi,constraint,constant,posnegEq,r0,tstart,tfinal,extras,1); 
 
constant=-0.74; 
tfinal=0; 
extras=0; 
ecavsimrange(alpha,psi,constraint,constant,posnegEq,r0,tstart,tfinal,extras,1); 
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tfinal=1/(alpha*cos(psi))-0.0001; 
extras=0; 
ecavsimrange(alpha,psi,constraint,constant,posnegEq,r0,tstart,tfinal,extras,1); 
plot([0.33 0.39],[0 0],'y','LineWidth',6) 
hold off 
 
%-------------------------------------------------------------------------------- 
%Constant speed rate, v_Edot 
constraint=5; 
constant=-1.41; 
r0=[1*sin(psi)/alpha-0.0001;-0.0001]; 
tstart=cos(psi)/alpha; 
tfinal=0; 
extras=0; 
ecavsimrange(alpha,psi,constraint,constant,posnegEq,r0,tstart,tfinal,extras,0); 
constant=1.41; 
r0=[1*sin(psi)/alpha-0.0001;0.0001]; 
tfinal=1/(alpha*cos(psi))-0.0001; 
extras=0; 
ecavsimrange(alpha,psi,constraint,constant,posnegEq,r0,tstart,tfinal,extras,1); 
 
constant=-2.02; 
r0=[0.67*sin(psi)/alpha-0.0001;-0.0001]; 
tstart=cos(psi)/alpha; 
tfinal=0; 
extras=0; 
ecavsimrange(alpha,psi,constraint,constant,posnegEq,r0,tstart,tfinal,extras,1); 
constant=2.02; 
r0=[0.67*sin(psi)/alpha-0.0001;0.0001]; 
tfinal=1/(alpha*cos(psi))-0.0001; 
extras=0; 
ecavsimrange(alpha,psi,constraint,constant,posnegEq,r0,tstart,tfinal,extras,1); 
 
constant=0; 
r0=[1.5*sin(psi)/alpha-0.0001;-0.0001]; 
tstart=cos(psi)/alpha; 
tfinal=0; 
extras=0; 
ecavsimrange(alpha,psi,constraint,constant,posnegEq,r0,tstart,tfinal,extras,1); 
constant=0; 
r0=[1.5*sin(psi)/alpha-0.0001;0.0001]; 
tfinal=1/(alpha*cos(psi))-0.0001; 
extras=0; 
ecavsimrange(alpha,psi,constraint,constant,posnegEq,r0,tstart,tfinal,extras,1); 
 
constant=0; 
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r0=[0.67*sin(psi)/alpha-0.0001;-0.0001]; 
tstart=cos(psi)/alpha; 
tfinal=0; 
extras=0; 
ecavsimrange(alpha,psi,constraint,constant,posnegEq,r0,tstart,tfinal,extras,1); 
constant=0; 
r0=[0.67*sin(psi)/alpha-0.0001;0.0001]; 
tfinal=1/(alpha*cos(psi))-0.0001; 
extras=0; 
ecavsimrange(alpha,psi,constraint,constant,posnegEq,r0,tstart,tfinal,extras,1); 
plot([0.33 0.75],[0 0],'y','LineWidth',6) 
hold off 
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%    ECAVSIMRANGE 
% 
%    by Keith Purvis, August 2003 
% 
%    Plots an ECAV trajectory solution given the selected ECAV system (constant 
%        velocity, constant course, constant turn rate, etc.) and the other 
%        parameters listed below - all for a straight line phantom track 
% 
%    alpha is the relative speed of the phantom track 
%    psi is the course of the phantom track 
%    see the ode solution source code for details on constraint, constant, and r0 
%    posneqEq is 1 for positive (increasing r) and 2 for negative (decreasing r) 
%        when constraint = 1 (constant velocity) or 6 (constant acceleration) 
%    tstart may be less than or greater than tfinal 
%    extras is 0 for no extra graphs and 1 for extra graphs 
%    multipleECAV is used for plotting multiple trajectories and is: 
%        0 if starting the first segment of the first trajectory 
%        1 otherwise 
%        2 if no ECAV trajectories are desired (bounds only) 
%    to end a plot of multiple trajectories, set hold off 
%    to plot a single trajectory with multiple segments, set hold on in between 
 
function [r,t]=ecavsimrange(alpha,psi,constraint,constant,posnegEq,r0,tstart,... 
    tfinal,extras,multipleECAV) 
 
if nargin==9 
    multipleECAV=9; 
end 
 
%Constraints 
v_Trange=0.2; 
v_Erange=0.2; 
v_Epseudomin=(1-v_Erange)/(1+v_Trange); 
v_Epseudomax=(1+v_Erange)/(1-v_Trange); 
phi_Erange=pi/3; 
phi_Emin=pi/2-pi/3; 
phi_Emax=pi/2+pi/3; 
 
%Solution for the ode 
tstep=0.001; 
[t,r,ts,rs,is,R,theta,theta_dot,theta_ddot]=phantomline(tstart,tstep,tfinal,... 
    r0,alpha,psi,constant,v_Epseudomin,v_Epseudomax,phi_Erange,posnegEq,... 
    constraint); 
Eq=['Eq. ',num2str(posnegEq)]; 
format compact 
eval_is(is,ts,'') 
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%Check conditions for switching 
if is(:)==1 
    theta_ddot_minus=2*alpha^2*(sin(psi)*cos(psi)-alpha*sin(psi)*(ts(1)-... 
        tstep))/((1+alpha^2*(ts(1)-tstep)^2-2*alpha*cos(psi)*(ts(1)-tstep))^2) 
    theta_ddot_plus=2*alpha^2*(sin(psi)*cos(psi)-alpha*sin(psi)*(ts(1)+... 
        tstep))/((1+alpha^2*(ts(1)+tstep)^2-2*alpha*cos(psi)*(ts(1)+tstep))^2) 
     
    if is(:)==1 & ((theta_ddot_minus>0 & theta_ddot_plus<0) | constraint==5) 
        posnegEq2=posnegEq+sign(1.5-posnegEq); 
        if constraint==1 
            r0=r(end); 
            tstart=ts+sign(tfinal-tstart)*tstep; 
        elseif constraint==5 
            r0=[r(end);rs(2)+2*rs(2)]; 
            tstart=ts+sign(tfinal-tstart)*tstep; 
        elseif constraint==6 
            r0=[r(end);rs(2)+sign(rs(2))*2*tstep]; 
            tstart=ts+sign(tfinal-tstart)*tstep; 
        end 
         
        [t2,r2,ts2,rs2,is2,R2,theta2,theta_dot2,theta_ddot2]=phantomline(... 
            tstart,tstep,tfinal,r0,alpha,psi,constant,v_Epseudomin,... 
            v_Epseudomax,phi_Erange,posnegEq2,constraint); 
        t=[t;real(t2)]; 
        r=[r;real(r2)]; 
        R=[R;R2]; 
        theta=[theta;theta2]; 
        theta_dot=[theta_dot;theta_dot2]; 
        theta_ddot=[theta_ddot;theta_ddot2]; 
        eval_is(is2,ts2,'After Switch, ') 
        Eq=['Eqs. ',num2str(posnegEq),' and ',num2str(posnegEq2)]; 
        is=is2; 
    end 
end 
theta_r=theta; 
t_r=t; 
 
%-------------------------------------------------------------------------------- 
 
mainhandle=gcf; 
 
%Calculate and plot other variables of interest 
ic=2:length(t)-2; 
ic2=2:length(t)-3; 
r_dot=(diff(r,1))./tstep; 
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r_dot(ic)=(r_dot(ic)+r_dot(ic-1))/2; 
r_ddot=(diff(r_dot(2:end),1))./tstep; 
r_ddot(ic2+1)=(r_ddot(ic2-1)+r_ddot(ic2))/2; 
phi_E=atan2(r(2:end-1).*theta_dot(2:end-1),r_dot(2:end)); 
phi_Edot=(diff(phi_E,1))./tstep; 
phi_Edot(ic2+1)=(phi_Edot(ic2-1)+phi_Edot(ic2))/2; 
v_E=sqrt(r_dot(2:end).^2+(r(2:end-1).*theta_dot(2:end-1)).^2); 
v_Edot=(diff(v_E,1))./tstep; 
v_Edot(ic2+1)=(v_Edot(ic2-1)+v_Edot(ic2))/2; 
a_E=sqrt((r_ddot(3:end)-r(3:end-2).*theta_dot(3:end-2).^2).^2+... 
    (r(3:end-2).*theta_ddot(3:end-2)+2.*r_dot(3:end-1).*theta_dot(3:end-2)).^2); 
heading_E=phi_E+theta(2:end-1); 
turnrate_E=phi_Edot(3:end)+theta_dot(3:end-2); 
 
if extras==1 
    figure;subplot(2,2,1) 
    plot(t,theta_dot);grid on 
    title('\theta_{dot} Versus Time') 
    subplot(2,2,2) 
    plot(t,theta_ddot);grid on; 
    title('\theta_{ddot} Versus Time') 
    subplot(2,2,3) 
    plot(t(3:end-2),phi_E(2:end-1));grid on; 
    title('\phi_E Versus Time') 
    subplot(2,2,4) 
    plot(t(4:end-3),phi_Edot(4:end-1));grid on; 
    title('\phi_E_{dot} Versus Time') 
    figure;subplot(2,2,1) 
    plot(t,r);grid on; 
    title('r Versus Time') 
    subplot(2,2,2) 
    plot(t(3:end-2),r_dot(3:end-1));grid on; 
    title('r_{dot} Versus Time') 
    subplot(2,2,3) 
    plot(t,r.*theta_dot);grid on; 
    title('r\cdot\theta_{dot} Versus Time') 
    subplot(2,2,4) 
    plot(t(4:end-3),r_ddot(4:end-1));grid on; 
    title('r_{ddot} Versus Time') 
    figure;subplot(2,2,1) 
    plot(t(3:end-2),v_E(2:end-1),'b',t,v_Epseudomin*ones(size(t)),'r-.',... 
        t,v_Epseudomax*ones(size(t)),'r-.');grid on; 
    title('\upsilon_E Versus Time');legend('Actual','Bounds',0) 
    subplot(2,2,2) 
    plot(t(4:end-3),v_Edot(4:end-1));grid on; 
    title('\upsilon_Edot Versus Time') 
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    subplot(2,2,3) 
    plot(t(3:end-2),heading_E(2:end-1),t,phi_Emin+theta,'r-.',... 
        t,phi_Emax+theta,'r-.');grid on; 
    title('Heading Versus Time');legend('Actual','Bounds',0) 
    subplot(2,2,4) 
    plot(t(4:end-3),turnrate_E(2:end-1));grid on; 
    title('Turn Rate Versus Time') 
end 
 
%Initialize the main plot figure 
tfinal2=1/(alpha*cos(psi))-0.0001; 
if multipleECAV==0 
    t=0:tstep:tfinal2; 
    R=sqrt(1+alpha^2.*t.^2-2*alpha*cos(psi).*t); 
    theta=asin(alpha*sin(psi).*t./R); 
    theta_dot=alpha*sin(psi)./(1+alpha^2.*t.^2-2*alpha*cos(psi).*t); 
end 
 
figure(mainhandle) 
if ishold 
    cla 
else 
    if get(gcf,'Color')==[1 1 1] 
        figure 
    end         
    axis equal;axis([0 1 0 max(R(end),1)]);hold on;axis off 
    set(gcf,'Color',[1 1 1],'MenuBar','figure','DoubleBuffer','on',... 
        'Renderer','painters') 
    title(['ECAV ',eval_constraint(constraint),... 
        ' Trajectory Solution for a Given Phantom Track'],'FontSize',11) 
end 
if t_r(1)<=2*tstep 
    if multipleECAV==9 
        q=text(r(1),-0.01,['r_0 = ',num2str(r(1),3)],'Color','g',... 
            'VerticalAlignment','top','HorizontalAlignment','left',... 
            'FontSize',11); 
        set(q,'HandleVisibility','callback') 
    else 
        q=text(r(1),-0.01,[num2str(r(1),2)],'Color','g',... 
            'VerticalAlignment','middle','HorizontalAlignment','right',... 
            'FontSize',11,'Rotation',90); 
        set(q,'HandleVisibility','callback') 
    end 
end 
     
if multipleECAV==0 | multipleECAV==9 | multipleECAV==2 
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    %Plot of phantom track 
    d=plot(R.*cos(theta),R.*sin(theta),'b','LineWidth',1.5); 
     
    %Plots of r*theta_dot bounds, speed isolines, and phi_E bounds 
    f1v=plot(v_Epseudomax/alpha.*R.*cos(theta),... 
        v_Epseudomax/alpha.*R.*sin(theta),'k:','Color',[0.7 0.7 0.7],... 
        'LineWidth',1.5); 
    f2v=plot(v_Epseudomin/alpha.*R.*cos(theta),... 
        v_Epseudomin/alpha.*R.*sin(theta),'c:','LineWidth',1.5); 
    f1=plot(v_Epseudomax./theta_dot.*cos(theta),... 
        v_Epseudomax./theta_dot.*sin(theta),'k-.','Color',[0.7 0.7 0.7],... 
        'LineWidth',1.5); 
    f2=plot(v_Epseudomin./theta_dot.*cos(theta),... 
        v_Epseudomin./theta_dot.*sin(theta),'c-.','LineWidth',1.5); 
    f3=plot(v_Epseudomax*sin(phi_Emin)./theta_dot.*cos(theta),... 
        v_Epseudomax*sin(phi_Emin)./theta_dot.*sin(theta),'y-.',... 
        'Color',[1 0.6 0.2],'LineWidth',1.5); 
    f4=plot(v_Epseudomin*sin(phi_Emin)./theta_dot.*cos(theta),... 
        v_Epseudomin*sin(phi_Emin)./theta_dot.*sin(theta),'r-.','LineWidth',1.5); 
     
    %Plots of radar LOS and ECAV trajectory 
    g=plot([0 R(end)*cos(theta(end))],[0 R(end)*sin(theta(end))],'k',... 
        'LineWidth',1.5); 
    e=plot(r.*cos(theta_r),r.*sin(theta_r),'g','LineWidth',1.5); 
     
    %Markers for radar, ECAV, and phantom target 
    x=plot(0,0,'ko','LineWidth',1.5,'MarkerFaceColor','r','MarkerSize',10); 
    o=plot(R(end)*cos(theta(end)),R(end)*sin(theta(end)),'b*','MarkerSize',5); 
    h=plot(r(end)*cos(theta_r(end)),r(end)*sin(theta_r(end)),'g<',... 
        'LineWidth',1.5,'MarkerFaceColor','y','MarkerSize',7); 
     
    %Text for theta= , psi= , and legend 
    p=text(0.15*cos(theta(end)),0.15*sin(theta(end)),['\theta = ',... 
            num2str(theta(end)*180/pi,'%6.0f'),'\circ'],'VerticalAlignment',... 
        'bottom','HorizontalAlignment','right','FontSize',11); 
    psiarray=pi-psi:psi/100:pi; 
    u=plot(1+0.07.*cos(psiarray),0.07*sin(psiarray),'b',[0.9 1],[0 0],'b',... 
        [1+0.1*cos(psiarray(1)) 1],[0.1*sin(psiarray(1)) 0],'b'); 
    v=text(1+0.07*cos(pi-psi),0.07*sin(pi-psi),['\psi = ',... 
        num2str(psi*180/pi,2),'\circ'],'VerticalAlignment','bottom',... 
        'FontSize',11,'Color','b'); 
    w=legend(['Phantom track, \alpha = ',num2str(alpha)],... 
        ['\upsilon_E = ',num2str(v_Epseudomax,2),' isoline'],... 
        ['\upsilon_E = ',num2str(v_Epseudomin,2),' isoline'],... 
        ['r\cdot\theta_{dot} = ',num2str(v_Epseudomax,2),' boundary'],... 
        ['r\cdot\theta_{dot} = ',num2str(v_Epseudomin,2),' boundary'],... 
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        ['\phi_E = ',num2str(phi_Emin*180/pi,2),'\circ (\upsilon_E = ',... 
            num2str(v_Epseudomax,2),')'],... 
        ['\phi_E = ',num2str(phi_Emin*180/pi,2),'\circ (\upsilon_E = ',... 
            num2str(v_Epseudomin,2),')'],'Radar LOS','ECAV trajectory'); 
    set([d e f1 f1v f2 f2v f3 f4 w],'HandleVisibility','callback') 
    if multipleECAV==0 | multipleECAV==2 
        set([g o p u(1) u(2) u(3) v x],'HandleVisibility','callback') 
    end 
elseif multipleECAV==1 
    e=plot(r.*cos(theta_r),r.*sin(theta_r),'g','LineWidth',1.5); 
    set(e,'HandleVisibility','callback') 
    if t_r(end)>=tfinal2-2*tstep 
        h=plot(r(end)*cos(theta_r(end)),r(end)*sin(theta_r(end)),'g<',... 
            'LineWidth',1.5,'MarkerFaceColor','y','MarkerSize',7); 
    end 
end 
hold off 
 
if multipleECAV==0 | multipleECAV==1 
    hold on 
    if t_r(end)>=tfinal2-2*tstep 
        set(h,'HandleVisibility','callback') 
    end 
end 
 
if multipleECAV==2 
    set([e h q],'HandleVisibility','on') 
    cla 
end 
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%    PHANTOMLINE 
% 
%    by Keith Purvis, August 2003 
% 
%    Solves for an ECAV trajectory solution given the input constraint and the 
%        other inputs, which are described in ecavsimrange.m - all for a straight 
%        line phantom track (phantom track functions are also calculated) 
%    An events function at the end stops the ode solution at the defined zero 
%        crossings, which relate to a possible switching function, 
%        v_Epseudorange, phi_Erange, radar crossing, or phantom track crossing 
% 
%    for the last input - constraint, 
%    1=constant speed, v_E; initial range required for r0 
%    2=constant course, phi_E; initial range required for r0 
%    3=constant heading;initial range required for r0 
%    4=constant turn rate; initial range and range rate required for r0 
%    5=constant speed rate, v_Edot; initial range and range rate required for r0 
%    6=constant acceleration,a_E; initial range and range rate required for r0 
 
function [t,r,te,re,ie,R,theta,theta_dot,theta_ddot]=phantomline(tstart,... 
    tstep,tfinal,r0,alpha,psi,constant,v_Epseudomin,v_Epseudomax,phi_Erange,... 
    posnegEq,constraint) 
 
%Options, tspan, and r0 initialized 
options = odeset('RelTol',1e-6,'AbsTol',1e-6,'MaxStep',tstep,'Events',@events,... 
    'Refine',1); 
if (tfinal-tstart)<0 
    tstep=-tstep; 
end 
tspan=tstart:tstep:tfinal; 
if constraint<=3 r0=r0(1); 
end 
 
%Ode solved 
[t,r,te,re,ie]=ode45(@f,tspan,r0,options,alpha,psi,constant,v_Epseudomin,... 
    v_Epseudomax,phi_Erange,posnegEq,constraint); 
 
%If the switching function = 0, last solution value deleted since imaginary 
if length(ie)>1 
    ie=min(ie); 
end 
if ie(:)==1 | constraint==6 
    re=r(end-1,:);r=r(1:end-1,1); 
    te=t(end-1);t=t(1:end-1); 
else 
    re=r(end,:);r=r(1:end,1); 
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    te=t(end);t=t(1:end,1); 
end 
 
%Calculation of other variables dependent on the phantom track 
R=sqrt(1+alpha^2.*t.^2-2*alpha*cos(psi).*t); 
theta=asin(alpha*sin(psi).*t./R); 
theta_dot=alpha*sin(psi)./(1+alpha^2.*t.^2-2*alpha*cos(psi).*t); 
theta_ddot=2*alpha^2*(sin(psi)*cos(psi)-alpha*sin(psi).*t)./... 
    ((1+alpha^2.*t.^2-2*alpha*cos(psi).*t).^2); 
 
%Arrays reversed if ode was solved back in time 
if (tfinal-tstart)<0 
    for i=1:length(t) 
        rr(i)=r(end+1-i); 
        tr(i)=t(end+1-i); 
        Rr(i)=R(end+1-i); 
        thetar(i)=theta(end+1-i); 
        theta_dotr(i)=theta_dot(end+1-i); 
        theta_ddotr(i)=theta_ddot(end+1-i); 
    end 
    r=rr;t=tr;R=Rr;theta=thetar;theta_dot=theta_dotr;theta_ddot=theta_ddotr; 
end 
 
%-------------------------------------------------------------------------------- 
 
function drdt=f(t,r,alpha,psi,constant,v_Epseudomin,v_Epseudomax,phi_Erange,... 
    posnegEq,constraint) 
 
R=sqrt(1+alpha^2*t^2-2*alpha*cos(psi)*t); 
theta=asin(alpha*sin(psi)*t/R); 
theta_dot=alpha*sin(psi)/(1+alpha^2*t^2-2*alpha*cos(psi)*t); 
theta_ddot=2*alpha^2*(sin(psi)*cos(psi)-alpha*sin(psi)*t)/((1+alpha^2*t^2-... 
    2*alpha*cos(psi)*t)^2); 
 
if constraint==1    %v_E constant 
    drdt=sign(1.5-posnegEq)*sqrt(constant^2-(theta_dot)^2*r^2); 
elseif constraint==2    %phi_E constant 
    drdt=r*theta_dot*cot(constant); 
elseif constraint==3    %heading constant 
    phi_E=constant-theta; 
    drdt=r*theta_dot*cot(phi_E); 
elseif constraint==4    %turnrate constant 
    phi_Edot=constant-theta_dot; 
    drdt=[r(2);(r(2)*(r(1)*theta_ddot+r(2)*theta_dot)-(r(2)^2+... 
        (r(1)*theta_dot)^2)*phi_Edot)/r(1)/theta_dot]; 
elseif constraint==5    %v_Edot constant 
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    drdt=[r(2);(-r(1)*theta_dot*(r(1)*theta_ddot+r(2)*theta_dot)+... 
        sqrt(r(2)^2+(r(1)*theta_dot)^2)*constant)/r(2)]; 
elseif constraint==6    %a_E constant 
    drdt=[r(2);r(1)*theta_dot^2+sign(1.5-posnegEq)*sqrt(constant^2-... 
        (r(1)*theta_ddot+2*r(2)*theta_dot)^2)]; 
end 
 
%-------------------------------------------------------------------------------- 
 
function [value,isterminal,direction]=events(t,r,alpha,psi,constant,... 
    v_Epseudomin,v_Epseudomax,phi_Erange,posnegEq,constraint) 
 
R=sqrt(1+alpha^2*t^2-2*alpha*cos(psi)*t); 
theta=asin(alpha*sin(psi)*t/R); 
theta_dot=alpha*sin(psi)/(1+alpha^2*t^2-2*alpha*cos(psi)*t); 
theta_ddot=2*alpha^2*(sin(psi)*cos(psi)-alpha*sin(psi)*t)/((1+alpha^2*t^2-... 
    2*alpha*cos(psi)*t)^2); 
 
if constraint==1 
    s=constant^2-(r*theta_dot)^2; 
    vmin=1; 
    vmax=1; 
    a=r*theta_dot/constant-sin(pi/2-phi_Erange); 
elseif constraint==2 
    v_E=r*theta_dot/sin(constant); 
    s=1; 
    vmin=v_E-v_Epseudomin; 
    vmax=v_E-v_Epseudomax; 
    a=1; 
elseif constraint==3 
    phi_E=constant-theta; 
    v_E=r*theta_dot/sin(phi_E); 
    s=1; 
    vmin=v_E-v_Epseudomin; 
    vmax=v_E-v_Epseudomax; 
    a=1; 
elseif constraint==4 
    v_E=sqrt(r(2)^2+(r(1)*theta_dot)^2); 
    s=1; 
    vmin=v_E-v_Epseudomin; 
    vmax=v_E-v_Epseudomax; 
    a=r(1)*theta_dot/v_E-sin(pi/2-phi_Erange); 
elseif constraint==5 
    v_E=sqrt(r(2)^2+(r(1)*theta_dot)^2); 
    s=r(2); 
    vmin=v_E-v_Epseudomin; 
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    vmax=v_E-v_Epseudomax; 
    a=r(1)*theta_dot/v_E-sin(pi/2-phi_Erange); 
elseif constraint==6 
    v_E=sqrt(r(2)^2+(r(1)*theta_dot)^2); 
    s=constant^2-(r(1)*theta_ddot+2*r(2)*theta_dot)^2; 
    vmin=v_E-v_Epseudomin; 
    vmax=v_E-v_Epseudomax; 
    a=r(1)*theta_dot/v_E-sin(pi/2-phi_Erange); 
end 
 
value=[s;vmin;vmax;a;R-r(1);r(1)]; 
isterminal=[1;1;1;0;1;1]; 
direction=[0;0;0;0;-1;-1]; 
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function eval_is(is,ts,string) 
 
if length(is)==2 
    is=is(1); 
end 
 
if is(:)==1 
    disp([string,'Switching Function Reached Zero at t = ',num2str(ts,3),' sec']) 
elseif is(:)==2 
    disp([string,'Lower Velocity Bound Reached at t = ',num2str(ts,3),' sec']) 
elseif is(:)==3 
    disp([string,'Upper Velocity Bound Reached at t = ',num2str(ts,3),' sec']) 
elseif is(:)==4 
    disp([string,'Angle Bound Reached at t = ',num2str(ts,3),' sec']) 
elseif is(:)==5 
    disp([string,'ECAV Trajectory Reached Phantom Track at t = ',... 
        num2str(ts,3),' sec']) 
elseif is(:)==6 
    disp([string,'ECAV Trajectory Reached Radar at t = ',num2str(ts,3),' sec']) 
elseif is(:)==7 
    disp([string,'No Events Occurred - Reached theta(end) at t = ',... 
        num2str(ts,3),' sec']) 
else 
    disp([string,'No Events Occurred']) 
end 
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function [string]=eval_constraint(constraint) 
 
if constraint==1 
    string='Constant Speed'; 
elseif constraint==2 
    string='Constant Course'; 
elseif constraint==3 
    string='Constant Heading'; 
elseif constraint==4 
    string='Constant Turn Rate'; 
elseif constraint==5 
    string='Constant Speed Rate'; 
elseif constraint==6 
    string='Constant Acceleration'; 
end 


